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Editors’ Introduction 

The 3rd International Conference on Exascale Applications and Software, 
EASC 2015, was hosted by EPCC, The University of Edinburgh (in 
cooperation with SIGHPC) from 21st-23rd April 2015 in Edinburgh.  

The scale of today’s leading HPC systems, which operate at the 
petascale, has put a strain on many simulation codes – both scientific 
and commercial. Only a small number of applications worldwide have, to 
date, demonstrated performance at the petaflop/s level. Many of the 
scientific challenges behind these codes are driving the need for the next 
generation of exascale HPC systems. Example scientific challenges 
originate from energy, climate, nanotechnology and medicine and are 
widely accepted to be of global significance. For simulation codes that 
are already struggling to scale up to petaflop levels, major investment is 
required to enable these codes to run at the exascale. Application 
optimisation and algorithmic modifications only represent part of this 
challenge. Systems of the scale envisaged present enormous challenges 
in terms of reliability, programmability, power consumption and usability. 
Programming models, libraries, languages, compilers and tools all need 
adaption and improvement. Applications must interact with many of these 
software aspects to be able to exploit exascale systems efficiently. The 
aim of this conference was to bring together all of the stakeholders 
involved in solving the software challenges of the exascale – from 
application developers, through numerical library experts, programming 
model developers and integrators, to tools designers. 

The event was extremely successful in the dissemination of progress, the 
discussion of new ideas and the creation of new collaborations. This 
book contains a selection of proceedings from the conference, which we 
hope can disseminate the presented research to a wider audience.  

Alan Gray, Lorna Smith and Michèle Weiland, 
Editors 



	
  iv	
  

	
  



Synthetic Program Analysis with Aspen

Jeffrey S. Vetter
Oak Ridge National Laboratory and

Georgia Institute of Technology
vetter@computer.org

Jeremy S. Meredith
Oak Ridge National Laboratory

jsmeredith@ornl.gov

ABSTRACT
Our community is facing major challenges in the next decade:
power, performance, resilience, and productivity. Emerging
HPC systems have novel new features, like tightly-integrated
heterogeneous computing and nonvolatile memory, that help
solve one problem but at the cost of introducing considerable
new complexity into the system design. Simply put, we see
more complexity and uncertainty in emerging architectures
than we have in the last two decades. Given this open de-
sign space, architects, applications scientists, and software
designers need tools to estimate performance and resource
requirements, while taking into account end-to-end design
principles. In this paper, we demonstrate how our Aspen
performance modeling language can be used to explore im-
portant properties of these application design spaces and
inform the development of future architectures. We include
examples from various applications, and show results from
Aspen for idealized concurrency, memory capacity, compu-
tational intensity, and others.

Keywords
Aspen, performance modeling, program analysis

1. INTRODUCTION
Our community is facing major challenges in the next

decade: power, performance, resilience, and productivity.
Although these challenges have been with us for some time,
they are growing more acute as facilities and scientists are
being confronted with a new level of complexity and required
investment, deriving from the complex new architectures
with a multitude of features and dynamically-controlled feed-
back. Poor decisions in architecting or procuring these next
generation systems could have devastating consequences on
scientists, sponsors, facilities, and vendors. In fact, many
experts feel that we will experience the most uncertainty in
computer architectures in two decades. Hence, it is imper-
ative to have tools that facilitate end-to-end design [7] and
design space exploration [10] of HPC systems.

1.1 Surveying the HPC Landscape
One need look no further than contemporary extreme

scale systems being deployed and procured [11,12]. As more
evidence, recent announcements of future HPC systems in
DOE support this point. Titan, Aurora, and Summit will
have entirely new features and configurations that have not
be present in earlier systems. System software, program-
ming environments, and applications must be improved to

use these new systems. Given the current outlook as illus-
trated in Table 1, it is should be noted that no two architec-
tures may be the same. Even if they have similar processors,
the memory and storage hierarchy may be different. So, it
is very important that these improvements be performance
portable, in order to help hide this complexity.

In particular, several trends are already emerging: het-
erogeneous computing, nonvolatile memory, and small or no
increases in storage bandwidth.

First, heterogeneous computing is apparent in many of to-
day’s top HPC systems. In earlier systems, such as Titan [2]
and Tsubame2 [5], the addition of GPUs to systems gave
performance improvements while keeping power constraints
satisfied. As this capabilities evolves, we see tighter inte-
grations of heterogeneous and special purpose capabilities
onto general processors. For example, over the past several
years, Intel has integrated GPUs, compression and encryp-
tion engines, random number generators, and other capabil-
ities directly onto their main processors [1]. Although this
functionality may be exposed to users in a number of ways,
it will be imperative to provide portable solutions to HPC
users. As seen in Table 1, both Titan and Summit will have
heterogeneous ISAs within the node that scientists will need
to carefully program and orchestrate. Meanwhile, the same
applications will be expected to run on other platforms like
Cori and Aurora.

Second, nonvolatile memory (NVM) systems in addition
to alternative memory architectures are emerging as a so-
lution to the limits of DRAM scaling, power, and cost [13].
Depending on the architectural solution, this change to the
memory system could be more disruptive to applications
teams than the change to heterogeneous computing. NVM
devices have major differences from DRAM [13]: lower write
durability; higher latencies and power costs for writes rel-
ative to reads; and, persistent state without the need for
standby power. Again, as with heterogeneous systems, pro-
gramming systems, system software, and architectures will
need to hide these often subtle differences from applications.
Although NVM devices have been transparently introduced
into existing systems as replacements for hard-disk drives
(HDD), they typically use existing I/O block-oriented in-
terfaces, though the software stacks have been optimized.
In the Summit and Aurora configurations, we must prepare
applications for potentially tigher integration of these NVM
devices with main memory and processors, bypassing the
I/O interface [6, 13].

In both of these cases, a number of open research ques-
tions about high-level system design remain. These ques-
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Table 1: Contemporary HPC system configurations (estimates as of May 2015).

Titan Cori Summit Aurora

Installation Date 2012 2016 2017-8 2018
Peak (PF) 27 >30 150 >180
Peak Power (MW) 8.2 <3.7 10 13
Processor AMD

Opteron CPU
+ NVIDIA
Kepler GPU

Intel Xeon
Phi Knights
Landing
+ Haswell
(data)

POWER9
+ NVIDIA
Volta GPU

Intel Xeon
Phi Knights
Hill

Node Count 18,688 9,300 (1,900 in data) 3,400 50,000
Node Main Memory (GB) 32 64-128 GB

DDR4; 16
GB High
Bandwidth

512 >7PB all types, nodes

Node NVM (GB) n/a n/a 800 (incl above)
Storage Cap (PB) 32, Lustre 28, Lustre 120, GPFS > 150, Lustre
Storage BW (GBps) 1,000 744 1,000 > 1
Interconnect Gemini Aries Dual Rail EDR-IB Intel Omni-Path

tions include the amount of NVM versus DRAM memory,
the number of latency-tolerant cores versus the number of
throughput cores, and how much application data structures
are a good fit for the characteristics of NVM when compared
to DRAM?

Finally, storage systems continue to increase in capacity,
but the aggregate storage bandwidth is only slowly increas-
ing, if it is increasing at all. This trend will force users
to consider other strategies for defensive checkpointing of
application state (e.g., burst buffers), and post-processing
and analysis of application output (e.g., in situ analysis).
These changes could force major changes in application de-
sign, and perhaps the remainder of the architecture (e.g.,
increasing the amount of NVM for in situ analysis of time-
series data [13]).

1.2 Contributions
To address these questions, we have developed a new method-

ology and tool for resource and performance prediction: As-
pen. Aspen is a domain-specific programming language for
performance modeling [8]. In this paper, we demonstrate
how Aspen facilitates high level design and analysis of ar-
chitectures and applications. Specifically, we make the fol-
lowing contributions.

1. We discuss the imminent challenges in the Introduc-
tion (§1).

2. We reinforce the importance of performance predic-
tions and related tools in the coming wave of new HPC
systems.

3. We discuss the range of performance prediction tech-
niques and how they might help address these chal-
lenges.

4. We use our Aspen performance modeling language [8]
to demonstrate how to draw insight into the end-to-end
design of these new systems from important applica-
tion metrics: computational intensity, memory usage,
idealized concurrency, and others.

2. ASPEN
Aspen (Abstract Scalable Performance Engineering No-

tation) [8] is designed to allow simple construction of per-
formance models through a domain-specific language which,
like full programming languages, is flexible, supports com-
posability. Aspen is a standard that makes it possible for
scientists to share their work, including a formal method-
ology for application models and abstract machine models.
An example of an Aspen kernel is shown in Listing 1; this ex-
ample shows global parameters (the definition of n), a kernel
definition (FFT1D) which contains computation ( the “ex-
ecute” block) including defined parallelism (“n”), and a ker-
nel definition (FFT3Dstep) which contains a parallel control
flow (“map”) which calls a number of one-dimensional FFTs
in parallel.

The execute block is defined in terms of resource require-
ments, including bytes of memory and floating point opera-
tions. Traits for each resource requirement clarify how each
resource is applied; for example, simd implies that the op-
erations can use vector operations on a processor. Some
resources specify sources/targets, such as fftVol being the
source of bytes loaded as necessary to complete the opera-
tion.

There are several ways to generate a performance model
for Aspen. They can be generated by hand, for instance;
this manual process is the only feasible approach to model
algorithms which are not yet codified. They can also be gen-
erated by hand even with source code available, but in this
case, tools can remove some of the drudgery of performance
modeling. Our COMPASS system [4] is just such a tool, us-
ing compiler-aided static analysis to generate Aspen models
from source code.

3. RESULTS

3.1 Order Analysis
Using the COMPASS system, we generated performance

models for a variety of benchmarks: Kernel Benchmarks
(JACOBI, MATMUL, SPMUL, LAPLACE2D), NAS Par-
allel Benchmarks (CG), and Rodinia Benchmarks (BACK-
PROP, BFS, HOTSPOT, KMEANS, LUD, SRAD), and us-
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1 param n = 1024
2
3 kernel FFT1D
4 {
5 execute [n]
6 {
7 flops [5 * log2(n)]
8 as dp, complex , simd
9 loads [a * max(1, log(n)/log(Z))]

10 of size [wordSize]
11 from fftVol
12 }
13 }
14
15 kernel FFT3Dstep
16 {
17 map [n^2]
18 {
19 call FFT1D
20 }
21 }

Listing 1: Aspen Kernel Example for 1D FFT

ing Aspen, we ran a performance prediction for each bench-
mark. As mentioned, one of the strengths of analytical per-
formance modeling tools like Aspen is the ability to generate
results symbolically. Here, we used Aspen to generate these
equations and perform extra simplification on them, effec-
tively treating all arithmetic involving constants as identity
operations and simplifying them away.

For each benchmark, we identified key model parameters
to leave as identifiers, but substituted values from applica-
tion model and machine model parameters during the sim-
plification process. Equations like n∗n+n∗n∗n get factored
during the process into (1 +n) ∗ (n ∗n), the constant elided,
and finally simplified back to n ∗ n ∗ n. In essence, the re-
sults give us the order of the runtime (cf. Big O notation)
in terms of key application parameters.

The results are shown in Table 2. As a concrete example,
we see that the runtime of MATMUL (matrix multiply) re-
turns an order of runtime of N ∗M ∗ P ; this is for a matrix
multiply for matrices of size N×M and M×P . In the case of
square matrices (where N == M == P ), this simplifies to
N3; a result we can easily validate against our expectations.

Benchmark Runtime Order
BACKPROP H ∗O + H ∗ I
BFS nodes + edges
CFD nelr ∗ ndim
CG nrow + ncol
HOTSPOT simtime ∗ rows ∗ cols
JACOBI m size ∗m size
KMEANS nAttr ∗ nClusters
LAPLACE2D n2

LUD matrix dim3

MATMUL N ∗M ∗ P
NW max cols2

SPMUL size + nonzero
SRAD niter ∗ rows ∗ cols

Table 2: Order analysis, showing Big O runtime for each
benchmark in terms of its key parameters.

3.2 Computational Intensity
The design of Aspen allows for the ability to represent

and extract key features of computational kernels. One of
the most common algorithmic features of interest in appli-
cations is computational intensity, the ratio of floating point
operations to the number of bytes loaded. This can be used
to gauge an algorithm’s performance on architectures which
are not defined in vast detail except for key features such
as peak FLOPS rates and memory bandwidth. The well-
known roofline plot is a common example — it shows system
performance for a range of computational intensity values; if
one is interested in measuring system performance in terms
of FLOPS, one must have a sufficiently intensive algorithm.

To explore computational intensity for an application in
detail, we took a COMPASS-generated model of the US
DOE hydrodynamic proxy application, LULESH [3], and
asked Aspen to return FLOPS:byte ratios for each major
routine. The results are shown in Table 3. We see routines
with both low and high computational intensity. Some even
have zero; those routines simply exist to rearrange memory
for future computation and perform no floating point oper-
ations at all.

Method Name FLOPS/byte
InitStressTermsForElems 0.03
CalcElemShapeFunctionDerivatives 0.44
SumElemFaceNormal 0.50
CalcElemNodeNormals 0.15
SumElemStressesToNodeForces 0.06
IntegrateStressForElems 0.15
CollectDomainNodesToElemNodes 0.00
VoluDer 1.50
CalcElemVolumeDerivative 0.33
CalcElemFBHourglassForce 0.15
CalcFBHourglassForceForElems 0.17
CalcHourglassControlForElems 0.19
CalcVolumeForceForElems 0.18
CalcForceForNodes 0.18
CalcAccelerationForNodes 0.04
ApplyAccelerationBoundaryCond 0.00
CalcVelocityForNodes 0.13
CalcPositionForNodes 0.13
LagrangeNodal 0.18
AreaFace 10.25
CalcElemCharacteristicLength 0.44
CalcElemVelocityGrandient 0.13
CalcKinematicsForElems 0.24
CalcLagrangeElements 0.24
CalcMonotonicQGradientsForElems 0.46
CalcMonotonicQRegionForElems 0.21
CalcMonotonicQForElems 0.21
CalcQForElems 0.39
CalcPressureForElems 0.08
Release 0.04
CalcEnergyForElems 0.10
CalcSoundSpeedForElems 0.13
EvalEOSForElems 0.09
ApplyMaterialPropertiesForElems 0.09
UpdateVolumesForElems 0.13
LagrangeElements 0.22
CalcCourantConstraintForElems 0.14
CalcHydroConstraintForElems 0.20
CalcTimeConstraintsForElems 0.16
LagrangeLeapFrog 0.19

Table 3: Computational intensity (bytes loaded or stored
per floating point operation) for methods in in the LULESH
proxy application.
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3.3 Memory Usage
Another algorithmic feature commonly of interest is the

amount of memory used by an algorithm. More useful than
merely the total memory used by the application, a more de-
tailed per-kernel breakdown allows a number of further anal-
yses. For example, armed with the size of all arrays touched
by each kernel, and the CPU and GPU performance of each
kernel, we can search for an optimal combination of kernels
which should be offloaded to a GPU – specifically, the set
which still fits in GPU memory and results in the best over-
all performance (including not just per-kernel CPU/GPU
performance, but also any necessary PCI-Express transfer
times for all arrays which are required on both host and
device).

An example analysis of each major routine in LULESH is
shown in Table 4. Note that exclusive memory usage is self-
only, and inclusive memory usage includes any arrays used
by any methods called directly or indirectly for each rou-
tine. Variables passed directly to a routine are not counted,
and so some even computationally-intense routines have an
exclusive memory footprint of zero.

Method Name Memory Usage
Exclusive Inclusive

InitStressTermsForElems 3.6e+06 3.6e+06
CalcElemShapeFunctionDerivatives 0 0
SumElemFaceNormal 0 0
CalcElemNodeNormals 0 0
SumElemStressesToNodeForces 1.7e+07 1.7e+07
IntegrateStressForElems 2.9e+07 2.9e+07
CollectDomainNodesToElemNodes 2.3e+06 2.3e+06
VoluDer 0 0
CalcElemVolumeDerivative 0 0
CalcElemFBHourglassForce 0 0
CalcFBHourglassForceForElems 6.6e+07 6.6e+07
CalcHourglassControlForElems 4.2e+07 7.0e+07
CalcVolumeForceForElems 0 7.3e+07
CalcForceForNodes 2.3e+06 7.3e+07
CalcAccelerationForNodes 5.4e+06 5.5e+06
ApplyAccelerationBoundaryCond 2.4e+06 2.4e+06
CalcVelocityForNodes 4.7e+06 4.7e+06
CalcPositionForNodes 4.7e+06 4.7e+06
LagrangeNodal 0 7.7e+07
AreaFace 0 0
CalcElemCharacteristicLength 0 0
CalcElemVelocityGrandient 192 192
CalcKinematicsForElems 1.1e+07 1.1e+07
CalcLagrangeElements 2.9e+06 1.1e+07
CalcMonotonicQGradientsForElems 1.3e+07 1.3e+07
CalcMonotonicQRegionForElems 7.3e+06 7.3e+06
CalcMonotonicQForElems 0 7.3e+06
CalcQForElems 0 1.9e+07
CalcPressureForElems 3.6e+06 3.6e+06
Release 7.3e+05 7.3e+05
CalcEnergyForElems 1.1e+07 1.2e+07
CalcSoundSpeedForElems 4.7e+06 4.7e+06
EvalEOSForElems 1.4e+07 1.7e+07
ApplyMaterialPropertiesForElems 2.6e+06 1.9e+07
UpdateVolumesForElems 1.5e+06 1.5e+06
LagrangeElements 0 3.7e+07
CalcCourantConstraintForElems 0 2.6e+06
CalcHydroConstraintForElems 0 1.1e+06
CalcTimeConstraintsForElems 2.2e+06 2.6e+06
LagrangeLeapFrog 0 1.0e+08

Table 4: Memory array bytes touched within a method (ex-
clusive) and within either a method or its callees (inclusive)
in the LULESH proxy application.

3.4 Ideal Concurrency
Ideal concurrency is the peak amount of parallelism avail-

able within an algorithm. Ideal concurrency can vary over
time, and rise and fall based on the stage of a program’s
execution.

Aspen can measure ideal concurrency of an application
independently of any particular machine. The process by
which it detects this information is by walking the control
flow of the program, and within each kernel, finding the
total task and data parallelism expressed in the control con-
structs for that kernel, and multiplying that by the ideal
concurrency of its callers. (A kernel called by two parent
kernels may have two different ideal concurrencies.)

Again, note that this is ideal concurrency, and is thus a
feature of the algorithm itself, but it does inform system
design in that parallelism beyond the ideal concurrency will
not result in an improvement to runtime. It also can inform
algorithm optimization; if some phase of the application has
a low concurrency, it is likely making poor use of the avail-
able resources.

An analysis of one application, the streaming sensor chal-
lenge problem featuring synthetic radar aperture (SAR) pro-
cessing [9], is shown in Figure 1, for three different tile sizes.
Note that larger tile sizes result in greater concurrency in
some phases, but lower concurrency in others. The ability
to extract and display this information concisely in Aspen
is key to helping application developers understand perfor-
mance implications on a variety of scalable systems.
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Figure 1: A plot of idealized concurrency by chronological
phase in the digital spotlighting application model.

3.5 Performance Profiling
A crucial aspect to analytical performance analysis is the

ability to generate predictions without needing source code
or even access to the target hardware. One logical manifes-
tation of this idea is the ability to generate program analyses
which mimic that of real performance analysis tools.

For example, one very commonly used performance anal-
ysis tool is the GNU Profiler, gprof. One of the synthetic
program analysis tools we created with Aspen, then, was a
gprof-like tool. An example of this is seen in Figure 2. Note
that the types of analyses needed to achieve this output
include counts of calls to each kernel, per-kernel runtimes,
both exclusive (self-only) and inclusive of called routines,
and call-graph analysis.

4 Proceedings of the 3rd International Conference on Exascale Applications and Software

Synthetic Program Analysis with Aspen Vetter & Meredith



Flat profile:

% cum self self total
time sec sec calls ms/call ms/call name
------------------------------------------------------------
86.91 370.76 370.76 30 12358.52 12358.52 fft3d.localFFT
10.03 413.54 42.78 20 2139.09 2139.09 fft3d.exchange
3.06 426.57 13.03 20 651.71 651.71 fft3d.shuffle
0.00 426.57 0.00 10 0.03 0.03 exchange
0.00 426.57 0.00 10 0.03 0.03 buildNList
0.00 426.57 0.00 10 0.01 0.01 ljForce
0.00 426.57 0.00 30 0.00 0.00 integrate
0.00 426.57 0.00 10 0.00 42657.18 fft
0.00 426.57 0.00 10 0.00 42657.18 fft3d.main
0.00 426.57 0.00 1 0.00 426572.70 main

Call graph:

index %time self children name
------------------------------------------------------------
[ 1] 100.0 0.00 426.57 main [1]

0.00 0.00 buildNList [8]
0.00 0.00 exchange [7]
0.00 426.57 fft [2]
0.00 0.00 integrate [10]
0.00 0.00 ljForce [9]

------------------------------------------------------------
0.00 426.57 main [1]

[ 2] 100.0 0.00 426.57 fft [2]
0.00 426.57 fft3d.main [3]

------------------------------------------------------------
0.00 426.57 fft [2]

[ 3] 100.0 0.00 426.57 fft3d.main [3]
42.78 0.00 fft3d.exchange [5]
370.76 0.00 fft3d.localFFT [4]
13.03 0.00 fft3d.shuffle [6]

------------------------------------------------------------
0.00 426.57 fft3d.main [3]

[ 4] 86.9 370.76 0.00 fft3d.localFFT [4]
------------------------------------------------------------

0.00 426.57 fft3d.main [3]
[ 5] 10.0 42.78 0.00 fft3d.exchange [5]
------------------------------------------------------------

0.00 426.57 fft3d.main [3]
[ 6] 3.1 13.03 0.00 fft3d.shuffle [6]
------------------------------------------------------------

0.00 426.57 main [1]
[ 7] 0.0 0.00 0.00 exchange [7]
------------------------------------------------------------

0.00 426.57 main [1]
[ 8] 0.0 0.00 0.00 buildNList [8]
------------------------------------------------------------

0.00 426.57 main [1]
[ 9] 0.0 0.00 0.00 ljForce [9]
------------------------------------------------------------

0.00 426.57 main [1]
[ 10] 0.0 0.00 0.00 integrate [10]

Figure 2: Synthetic gprof output from molecular dynamics
application model.

3.6 Sensitivity Analysis
Another strength of analytical modeling techniques is their

ability to easily generate predictions for hardware which
does not (yet) exist. One can easily create abstract ma-
chine models for new systems with proposed architectural
parameters and quickly evaluate existing application mod-
els on these new systems. To investigate this application of
Aspen, we used models of two US DOE proxy applications,
the hydrodynamics application LULESH and molecular dy-
namics application CoMD, and generated predictions using
a model of a contemporary hardware system. We then au-
tomatically explored a range of hardware parameters (e.g.,
clock speeds, bus widths, latencies) to see how sensitive the
application was to each parameter.

Here, we calculate sensitivity (S) as the ratio of improve-
ment in application runtime to the improvement in modified
hardware parameter.

S =
Iruntime

Iparam

Each of these improvements is itself a ratio, for example:

Iruntime =
runtimeorig
runtimenew

Iparam =
paramorig

paramnew

Note that while a decrease in runtime is always an im-
provement, hardware parameters are sometimes improved
with a decrease in value (e.g., latency), and others are some-
times improved with an increase in value (e.g., clock speed),
and so we invert Iparam based on the type of parameter so
that a higher value of Iparam is always an improvement.

As a concrete example of sensitivity, suppose that we dou-
ble clock speed (i.e., Iparam = 2.0), and see a decrease in
runtime by a factor of 2× (i.e., Iruntime = 2.0). This results
in a sensitivity of 100% for this application to clock speed.

The results for LULESH and CoMD are shown in Figure 3.
We see, for instance, that both applications are largely bot-
tlenecked by memory performance on both CPU and GPU,
as memory subsystem improvements showed the greatest ap-
plication performance improvement (i.e., showed the highest
sensitivity). However, we also predict that LULESH is more
sensitive to memory latency while CoMD is more sensitive
to memory bandwidth. This type of information is useful
to predict architectural changes which would result in the
greatest benefit to exist applications in, for example, the
hardware/software codesign process.
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Figure 3: Sensitivty of two DOE proxy applications to var-
ious hardware parameters.

4. CONCLUSIONS
In this paper, we have reviewed major challenges for extreme-

scale HPC in the next decade: power, performance, re-
silience, and productivity. Emerging HPC systems have
novel new features, like tightly-integrated heterogeneous com-
puting and nonvolatile memory, that help solve one prob-
lem but at the cost of introducing considerable new com-
plexity into the system design. Simply put, we see more
complexity and uncertainty in emerging architectures today
than we have in the last two decades. Given this open de-
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sign space, architects, applications scientists, and software
designers need methods and tools to estimate performance
and resource requirements, while taking into account end-
to-end design principles. In this paper, we demonstrated
how our Aspen performance modeling language can be used
to explore important properties of these application design
spaces and inform the development of future architectures.
We included examples from various applications, and showed
results from Aspen for idealized concurrency, memory capac-
ity, computational intensity, and others.
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ABSTRACT
CUBISM-MPCF is a compressible, two-phase flow solver
that has performed unprecedented flow simulations, employ-
ing 13 trillion computational elements to study cavitation
collapse of a cloud composed of 15’000 bubbles. The code
had been deployed on 1.6 million cores of the Sequoia IBM
BlueGene/Q supercomputer, reaching initially 11 PFLOPs,
corresponding to 55% of its nominal peak performance. This
paper reports, for the first time, the techniques used to
extend the performance of the code by 30% reaching 14.4
PFLOPs on BlueGene/Q systems. The achieved 72% of
the peak performance constitutes to date the best perfor-
mance for flow simulations in supercomputer architectures.
Our techniques take advantage of the underlying hardware
capabilities and were applied through all levels in the soft-
ware abstraction aiming at full exploitation of the inherent
instruction/data-,thread- and cluster-level parallelism. The
software advances by two to three orders of magnitude the
state-of-the-art both in terms of time to solution and geo-
metric complexity of the flow. We believe that the present
methods are relevant to all grid based solvers and as such
they may serve to enhance the capabilities across different
areas of simulation based science.

Keywords
High performance computing, flow simulations, supercom-
puters

1. INTRODUCTION
Vehicles operating with liquid fluids are the most domi-

nant form of transportation and they account for more than
20% of the world‘s energy resources. Their energy efficient
operation is of paramount importance as further reduction
in CO2 emissions requires improving the efficiency of inter-
nal combustion engines which in turn implies high-pressure
fuel injection systems. Precise fuel injection control and
enhanced fuel-air mixing implies high liquid fuel injection
pressures. In such conditions, liquid fuel can undergo va-
porization and subsequent re-condensation in the combus-
tion chamber. Clusters of vapor bubbles incepted in such
flow conditions are referred to as “cloud cavitation”. Their
collapse induces pressure peaks up to two orders of mag-
nitude larger than the ambient pressure [10]. When such
pressures are exerted on solid walls they can cause material
erosion of the combustion chamber and limit the lifetime
of the fuel injectors. The damaging effects of cloud cavita-

tion collapse are also detrimental to the operation of marine
propellers and turbomachinery yet they can be harnessed in
medical applications ranging from kidney lithotripsy to drug
delivery [7].

Realistic simulations require two phase flow solvers ca-
pable of capturing interactions between multiple deform-
ing bubbles, pressure waves and shocks and their interac-
tion with turbulent flow fields. CUBISM-MPCF is a high
throughput software (ACM Gordon Bell Prize 2013) [8] that
addresses challenges critical to flow simulations in terms of
floating point operations, memory traffic and storage capac-
ity. The software has been designed to take advantage of
the features of the IBM BlueGene/Q (BGQ) platform to
simulate cavitation collapse dynamics using up to 13 trillion
computational elements. The performance of the software
has been shown to reach an unprecedented 14.4 PFLOP/s
on 1.6 million cores corresponding to 72% of the peak on
the 20 PFLOP/s Sequoia supercomputer. Furthermore, the
software introduces a first of its kind efficient wavelet based
compression scheme, in order to decrease the I/O time and
the footprint of the simulations. The scheme delivers com-
pression rates up to 100 : 1 and takes less than 1% of the
total simulation time.

As collapsing bubbles cover about 50% of the computa-
tional domain, we chose a uniform resolution over an adap-
tive mesh refinement [2] or a multi resolution technique [11]
for the discretization of this flow field. By performing simu-
lations that resolve collapsing clouds with up to 15’000 bub-
bles, CUBISM-MPCF improved by two orders of magnitude
the previous state of the art, set by Adams and Schmidt
[1]. Considering uniform resolution solvers, simulations of
noise propagation of jet engines were performed on Sequoia
using similar number of computational elements but with
significantly lower performance in terms of time to solution
and percentage of the peak [3]. Regarding performance, an
earlier version of the present software achieved 30% of the
nominal peak on 47k cores of Cray XE6 Monte Rosa [4] for
studies of shock-bubble interactions.

In this work, we first discuss our key software design de-
cisions for addressing simulation challenges with regard to
floating point operations and memory traffic. Then, we
present and evaluate optimization techniques that allowed
us to improve the initial performance of CUBISM-MPCF
from 55% to 72% of the theoretical peak on BGQ systems,
which is translated to the increase from 11 to 14.4 PFLOP/s
on Sequoia. These techniques take advantage of the under-
lying hardware capabilities and were applied at the three
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abstraction layers of the software (core, node, and cluster),
aiming at full exploitation of the inherent instruction/data-,
thread- and cluster-level parallelism.

The paper is organized as follows: in Section 2 we briefly
present the governing equations and their numerical dis-
cretization. In Sections 4 and 3 we present CUBISM-MPCF
and summarize the main features of the BGQ platform, re-
spectively. In Section5 we present the optimization tech-
niques that improved the efficiency of our solver. Detailed
performance results of the improved solver are presented in
Section 6. Finally, we conclude in Section 7.

2. EQUATIONS AND DISCRETIZATION
Cavitation dynamics involve a complex interplay of physi-

cal processes associated with compressibility, convective and
viscous dissipation effects. We simulated cavitation in in-
viscid, compressible, two-phase flows using a finite-volume
discretisation of the governing Euler equations. The evolu-
tion of density, momenta and the total energy of the flow is
described with the following system of equations:

∂ρ

∂t
+∇ · (ρu) = 0,

∂(ρu)

∂t
+∇ · (ρuuT + pI) = 0,

∂(E)

∂t
+∇ · ((E + p)u) = 0. (1)

The evolution of the vapor and liquid phases is determined
by another set of advection equations:

∂φ

∂t
+ u · ∇φ = 0, (2)

where φ = (Γ,Π) with Γ = 1/(γ − 1) and Π = γpc/(γ −
1). The specific heat ratio γ and the correction pressure of
the mixture pc are coupled to the system of equations (1)
through a stiffened equation of state of the form Γp + Π =
E − 1/2ρ|u|2.

We discretize these equations using a finite volume method
in space and evolving the cell averages in time with an
explicit time discretization. Each simulation step involves
three kernels: DT, RHS and UP. The DT kernel computes
a time step that is obtained by a global data reduction of
the maximum characteristic velocity. The RHS kernel en-
tails the evaluation of the Right-Hand Side (RHS) of the
governing equations for every cell-average. The UP kernel
updates the flow quantities using a Total Variation Dimin-
ishing (TVD) scheme. Depending on the chosen time dis-
cretization order, RHS and UP kernels are executed multiple
times per step.

The spatial reconstruction of the flow field is carried out
on velocity and pressure ([6]) while their zero jump condi-
tions across the contact discontinuities are maintained by re-
constructing special functions of the specific heat ratios and
correction pressures. Quantities at the cell boundaries are
reconstructed through the fifth-order Weighted Essentially
Non-Oscillatory (WENO) scheme [5]. In order to advance
the system, we compute the numerical fluxes by using the
HLLE (Harten, Lax, van Leer, Einfeldt) scheme [12]. The
evaluation of RHS requires information exchange of adjacent
subdomains due to the WENO scheme. The RHS evalua-
tion includes five stages/microkernels: a conversion stage
from conserved to primitive quantities (CONV), a spatial
reconstruction (WENO) using neighboring cells, evaluation

Table 1: BGQ node performance table.
Cores 16, 4-way SMT, 1.6 GHz
Memory 16KB L1, 32MB L2, 16GB DDR3
Peak performance 204.8 GFLOP/s
L2 bandwidth 185 GB/s (measured)
DDR3 bandwidth 28 GB/s (measured)

of the numerical flux (HLLE) at the cell boundaries, sum-
mation of the fluxes (SUM) and a final stage for writing back
the results (BACK).

3. HARDWARE PLATFORM
Our target platform was the IBM Blue Gene/Q super-

computer. This platform is based on the BGQ compute
chip which is equipped with 16 symmetric cores operating
at 1.6 GHz. A per-core Quad floating-point Processing Unit
implements the QPX instruction set and has a SIMD-width
of 4. Each core supports 4 hardware threads, offering a max-
imum concurrency of 64 on a single BGQ node. A 16 KB L1
data cache is shared across the hardware threads of a single
core. Each core accesses the shared L2 data cache through
a crossbar. L2 is organized in 16 slices of 2 MB and mem-
ory addresses are scattered across these slices. An L1 cache
prefetching unit aims at hiding possible latencies from the
L2 data cache and DDR memory.

Table 1 summarizes the main performance features of a
single BGQ node. Node boards consist of 32 compute nodes
and are grouped in 32 to form a rack, with a nominal com-
pute performance of 0.21 PFLOP/s. BGQ nodes are placed
in a five-dimensional network topology, with a network band-
width of 2 GB/s for sending and 2 GB/s for receiving data,
respectively. Due to the relatively low ridge point of the
platform, kernels that exhibit operational intensities higher
than 7.3 FLOP/off-chip Bytes are compute-bound.

4. SOFTWARE LAYOUT
CUBISM-MPCF is designed to minimize compulsory mem-

ory traffic by using low-storage time stepping schemes that
reduce the overall memory footprint and high-order spa-
tiotemporal discretization schemes that decrease the total
number of steps. In its current version, the solver employs
a third-order low-storage TVD Runge-Kutta time stepping
scheme, combined with a fifth order WENO scheme. To
avoid degradation of operation intensity, we employ data
reordering and cache-aware techniques. Data reordering is
achieved by grouping the computational elements into 3D
blocks of contiguous memory, organized in an AoS format.
To effectively operate on blocks we consider SIMD-friendly
temporary data structures, in SoA format, that allow for ex-
tensive use of vector intrinsics In addition, to increase tem-
poral locality we employ computation reordering techniques
when evaluating the RHS.

CUBISM-MPCF is written in C++ and parallelized using
the MPI and OpenMP programming models. It is concep-
tually decomposed into three layers: cluster, node, and core.

The cluster layer is responsible for the domain decomposi-
tion and the inter-rank information exchange based on MPI.
The computational domain is decomposed into subdomains
across the ranks in a cartesian topology with a constant sub-
domain size. The subdomains are further decomposed into
constant-sized blocks of data, which are divided into halo
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Figure 1: Initial performance

and interior ones during the evaluation of the RHS. The
cluster layer uses non-blocking point-to-point communica-
tions to exchange ghost information for the halo blocks and
dispatches the prepared blocks for computation to the node
layer. The time for processing the blocks is one order of
magnitude larger than the data transfer time, which allows
for the efficient communication/computation overlap.

The multithreaded node layer is responsible for coordinat-
ing the work within the ranks. We enforce optimal thread-
data affinity through a depth-first thread placement layout.
The work associated to each block is exclusively assigned to
one thread based on the OpenMP dynamic scheduling pol-
icy. This hides potential imbalances during the evaluation of
the RHS, while the incurred runtime overhead is amortized
by the work per block, which is in the order of 10 ms (per
thread). To evaluate the RHS of a block, the assigned thread
loads the block data and ghosts into a per-thread dedicated
buffer. For a given block, the intra-rank ghosts are obtained
by loading fractions of the surrounding blocks, whereas for
the inter-rank ghosts data is fetched from a global buffer.
The node layer relies on the core layer for the execution of
the compute kernels.

The core layer is responsible for the execution of the com-
pute kernels, namely RHS, UP, DT, as well as for the forward
wavelet transform (FWT) kernel of the compression scheme.
On IBM BGQ (and Cray XE6/XC30) platforms, this layer
benefits from QPX and SSE/AVX intrinsics to expose more
data-level parallelism. The RHS kernel makes use of light-
weight ring buffers that are designed to minimize the mem-
ory consumption and maximize the temporal locality. Due
to its spatial access pattern and computational irregulari-
ties, the RHS is not straightforward to vectorize: it involves
AoS/SoA conversions, data reshuffling for stencil operations
and conditional branches. This, together with kernel micro-
fusion, increases the instruction-level parallelism.

For a more detailed description of CUBISM-MPCF we
refer to Ref. [8].

5. PERFORMANCE IMPROVEMENTS
Fig 1 summarizes the initial overall performance (ALL) of

CUBISM-MPCF as well as the performance of its individ-
ual kernels (RHS, DT, UP), obtained on 1, 24 and 96 BGQ
racks. From 1 to 24 racks, the performance of the RHS ker-
nel decreases from 60% to 57% of the peak. The DT kernel

exhibits a 2% performance loss while the UP kernel, which
does not involve any communication, remains unaffected.
Another 2% loss in the performance is observed for the RHS
kernel on the 96 BGQ racks, achieving 11 PFLOP/s.

The optimization techniques described in this section al-
lowed us to improve by 31% the sustained performance of
our simulations. The highest sustained peak performance
reached 14.43 (previously 10.99) PFLOP/s, which corre-
sponds to 72% (previously 55%) of the nominal peak of Se-
quoia, the IBM BGQ system at the Lawrence Livermore
National Laboratory.

We did not introduce any algorithmic changes in our soft-
ware but instead, we focused on its fine-tuning and the ex-
ploitation of the BGQ hardware. Our improvements result
from addressing three major performance challenges: com-
putation/communication overlap, memory management, and
load imbalance.

Computation/Communication overlap
Despite the use of non-blocking MPI calls and the adequate
processing time of inner blocks before calling MPI_Waitall(),
the cluster layer of the initial version suffered a 5% perfor-
mance loss from 1 to 96 BGQ racks mainly due to inef-
ficient communication/computation overlap observed for a
large number of compute nodes.

Initially, we modified our code to post all the asynchronous
MPI_Irecv() calls before the MPI_Isend() calls. We man-
aged to eliminate communication overheads by activating
the asynchronous progress communication at the PAMID
layer of the BGQ MPI implementation. This mechanism
leads to practically zero overhead for the non-blocking point-
to-point communication in the RHS kernel. In addition to
setting the appropriate environment variables, we had to
apply a new workflow for the rank/thread configuration of
1/64 on each BGQ node. More specifically:

• The main thread issues MPI_Irecv/Isend calls for the
halo blocks.

• It then encounters a parallel region with 63 OpenMP
threads, where each thread processes a single inner
block. The number of assigned blocks per thread can
be adjusted to allow for full overlap of communication
with computation.

• The main thread calls MPI_Waitall() after this paral-
lel region.

• The rest of the inner blocks and the halo ones are pro-
cessed by all 64 OpenMP threads in a subsequent par-
allel region using a dynamically scheduled for loop.

The necessity of this scheme is attributed to the non-
preemptive scheduling of software threads, which does not
allow for core oversubscription. Due to the ‘free’ hard-
ware thread that advances MPI communications in the back-
ground, the total communication time of MPI_Waitall() is
negligible. In turn the performance loss of the RHS kernel
at the cluster layer is minimized and becomes practically
independent of the number of compute nodes used for the
simulation.

Memory management
In order to reduce L1 Data Cache Misses (DCM) and register
spilling, we applied the following techniques:
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1. Linear stream prefetching of data was activated with
the confirmed mode and depth equal to one (default
is two). A stream is confirmed when there are two L1
cache misses within 128 bytes.

2. Deactivation of compiler-based unrolling of a loop that
invokes the QPX-based WENO kernel. The initially
used pragma unroll(4) compiler directive was affect-
ing performance due to register spilling.

3. Faster loading of ghost data both at the node and clus-
ter layer due to more efficient unpacking of the received
data. This was achieved by extensive use of the built-
in __bcopy() function.

Load imbalance
The load imbalance at the cluster layer was originally mani-
fested by significant times spent at MPI_Allreduce. Besides
the varying times of MPI_Waitall, load imbalance was in-
troduced by the intra-node scheduling scheme for block pro-
cessing and the boundary conditions at the cluster level. we
made the following code modifications:

1. Besides fine tuning of computation/communication over-
lap, the adopted block processing workflow improves
load balancing because blocks are distributed evenly to
the OpenMP threads of the two parallel regions men-
tioned above. For instance, for a typical cubic sub-
domain of 163 = 4096 blocks per node, 63 blocks are
initially processed and then 4033 blocks are dynam-
ically distributed among 64 threads. In contrast, the
previously used workflow first assigns 2744 inner blocks
and then 1352 halo blocks to 64 threads, increasing the
possibility that some OpenMP threads to become idle.

2. Boundary conditions are enforced by using loop un-
rolling and copying memory with the __bcopy() func-
tion. This minimizes per-block overheads and com-
bined with the faster loading of ghost data leads to
more uniform block-processing time across the com-
pute nodes and, thus, in better load balancing.

Additional fine tuning options
We observed minor performance improvements (<0.5%) in
our solver for the following options:

• Use of the same optimization flag (“-O3”) for all the
three layers of the software: the core layer was previ-
ously compiled with “-O5” .

• Decrease of the stack size of OpenMP threads from
1MB to 512KB.

Numerical accuracy
In addition to these advances, we extended the level of accu-
racy in our simulations, by introducing an additional second
pass in the Newton-Raphson scheme used for the compu-
tation of the reciprocals. The previously employed single-
pass scheme achieves 13.79 PFLOP/s of peak performance
for the RHS Kernel. The two-pass scheme increases the
computational intensity with respect to the single-pass, at
the expense of slightly higher time-to-solution (12%). This,
combined with the better exploitation of memory subsys-
tem and the communication and load imbalance advances
allowed us to reach 14.43 PFLOP/s for the RHS kernel.

6. PERFORMANCE RESULTS
We compiled CUBISM-MPCF with the same software stack

and version of the IBM XL C/C++ compiler (v12.1) and
used the IBM Hardware Performance Monitor (HPM) Toolkit
for BGQ for measuring performance figures.

Cluster layer
We repeated the initial runs for identical cloud simulations
and problem sizes, using 4096 blocks on each compute node
with 323 computational elements in each block. Performance
measurements for the fraction of the peak and the achieved
PFLOP/s on the 96-rack Sequoia BGQ system (98304 nodes,
1572864 cores) are presented in Table 2 (top and bottom re-
spectively). In summary, the overall performance has been
improved from 10.14 to 13.1 PFLOP/s for the two-pass
scheme and to 11.3 PFLOP/s for the single-pass scheme.

On the 96 racks of Sequoia, our simulations operate on
Nc=13.2 trillion grid points and therefore, each core pro-
cesses 8.39 million points every 15.2 seconds. By dividing the
time per step with the number of points per core, we com-
pute that the normalized time is equal to Tw=1.81. Tw was
introduced by Bermejo-Moreno et al. [3] to characterize the
performance of their Hybrid solver and the best values they
achieved for their turbulence simulations on Sequoia range
between 16.3 and 39.0, while the achieved performance did
not exceed 6.4% of the peak. By projecting the performance
of [1] on the BGQ platforms and assuming perfect scaling,
we compute that Tw =29.7.

Node layer
We assess the performance of the node layer by performing
simulation runs on a single BGQ chip. Although this layer
performs ghost reconstruction across the blocks, it com-
pletely avoids explicit communication and synchronization
overheads due to MPI. In contrast to the cluster layer, the
4096 blocks are dynamically scheduled to the 64 OpenMP
threads using a single parallel for loop.

The percentage of the peak achieved by the node layer
is depicted in Table 3. We observe that the overall perfor-
mance of both schemes for the node layer, both in fraction
of the peak and time per simulation step, is close to the
corresponding performance achieved for the cluster layer on
the 96 racks. We observe 0.6% and 5.6% absolute perfor-
mance loss for the RHS and DT kernels, while UP is not
affected as it involves local computations. The minimal per-
formance loss for RHS demonstrates the effectiveness of our
computation-communication overlap scheme. With regard
to DT, the difference between the two layers is that the
cluster layer involves a global MPI reduction operation. In
addition, load imbalance during the processing of blocks can-
not be fully eliminated due to different boundary conditions.
The loss in the overall performance is close to that of the
RHS kernel, while the time required for a single simulation
step increases increases by 0.3 seconds for both cases.

The third row in Table 3 shows the performance of a
scheme where both reciprocal/divisions and square roots
computations are performed using the native QPX-based
vec_swdiv() and vec_swsqrt() functions. This scheme in-
creases the performance of the DT kernel but delivers lower
performance to RHS, which affects both the overall per-
formance and mostly the time to solution. Based on the
observed performance and accuracy of our simulations, we
concluded that vec_swdiv() follows the two-pass scheme.
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Table 2: Performance in fraction of the peak (top) and improvements in attained PFLOP/s (bottom) as well
as time to solution for the initial and the updated version of the software and two accuracy levels.

ALL RHS DT UP TtS (sec)

Initial (single-pass) 50.4% 54.6% 4.9% 2.4% 18.3
Updated (single-pass) 61.1% 68.5% 10.2% 2.3% 15.2
Updated (two-pass) 64.8% 71.7% 13.2% 2.3% 17.0

Initial (single-pass) 10.14 10.99 0.98 0.49 18.3
Updated (single-pass) +1.16 +2.80 +1.07 -0.02 -3.1
Updated (two-pass) +2.96 +3.44 +1.67 -0.02 -1.3

Table 3: Achieved performance of the node layer.

ALL RHS DT UP TtS (sec)

Updated (single-pass) 61.9% 69.1% 15.8% 2.3% 14.9
Updated (two-pass) 65.5% 72.3% 19.9% 2.3% 16.7
Updated (native) 64.9% 71.1% 20.4% 2.3% 17.6

Core layer
We evaluate the performance of the WENO kernel, the most
time consuming stage of the RHS. Table 4 shows the per-
formance of the two accuracy schemes (single and two-pass)
for the reciprocal and for both of the QPX non-fused and
fused WENO implementations. The fused WENO imple-
mentations reach 77.6% and 80.5% of the peak performance
of the BGQ core (12.8 GFLOP/s), which are within 1% of
their maximum theoretical performance as defined by their
density of FMA operations. Kernel fusion improves the per-
formance of WENO by 8% and 22% with respect to the
attained GFLOP/s and processor cycles respectively.

Simulations
We initialize the simulation with spherical bubbles modeling
the state of the cloud right before the beginning of collapse,
while radii of the bubbles are sampled from a lognormal dis-
tribution corresponding to a range of 50-200 microns. For
the bubble distributions, we choose a resolution such that
the smallest bubbles are still resolved with 50 points per ra-
dius. Material properties, γ and pc, are set to 1.4 and 1 bar
for pure vapor, and to 6.59 and 4096 bar for pure liquid.
Initial values of density, velocity and pressure are set to 1
kg/m3, 0, 0.0234 bar for vapor and to 1000 kg/m3, 0, 100
bar to model the pressurized liquid. We chose a CFL of 0.3,
leading to a time step of 1ns for a total of 40’000 steps. The
simulations were performed in mixed precision: single pre-
cision for the memory representation of the computational
elements and double precision for the computation.

Recent simulation results are presented in Fig. 2 providing
an unprecedented level of detail for the evolution of bubble
interfaces and pressure isosurfaces in a collapsing cloud of
cavities over a solid wall. In Fig. 2(left) we visualize the
liquid/vapor interface as well as the pressure field and the
solid wall for a simulation at t = 0.6. We also monitor the
maximum pressure in the flow field and on the solid wall, the
equivalent radius of the cloud ( 3

√
3Vvapor/4π). At t = 0.3,

we observe initial asymmetric deformation of the bubbles
while a few bubbles have undergone the final stage of their
collapse. At t = 0.6 a large number of bubbles have col-
lapsed with larger collective pressure hot spots within the
flow field. At a later stage, the highest pressure is recorded
over the solid wall to be about 20 times larger than the am-

bient pressure (Fig. 2, right). We consider that this pressure
is correlated with the volume fraction of the bubbles, a sub-
ject of our ongoing investigations. We also observe that the
equivalent radius of the cloud (blue line in the same figure)
undergoes an expansion after t = 0.6 implying that some
packets of vapor grow larger, indicating bubble rebound,
before undergoing their final collapse.

7. CONCLUSION AND OUTLOOK
We have presented CUBISM-MPCF, a large-scale com-

pressible, two-phase flow simulation software designed for
studies of cloud cavitation collapse. The software is built
upon algorithmic and implementation techniques that ad-
dress the challenges posed to classical flow solvers by con-
temporary supercomputers, namely the imbalance between
the compute power and the memory bandwidth as well as
the limited I/O bandwidth. The present flow simulations on
1.6 million cores of Sequoia achieve an unprecedented 14.4
PFLOP/s corresponding to 72% of its peak. The simula-
tions employ 13 trillion computational elements to resolve
15’000 bubbles improving by two orders of magnitude the
state of the art in terms of geometric complexity.

We consider that the techniques reported here in can be
adopted to enhance the performance of all finite volume and
finite difference flow solvers that employ uniform grid sizes.
Our goal is to enhance this software with wavelet adapted
grids for multiresolution flow simulations [9]. We envision
that large scale simulations of cloud cavitation collapse will
enhance engineering models and form the foundation for
complete simulations of high performance fuel injection sys-
tems. On-going research in our group focuses on coupling
material erosion models with the flow solver for predictive
simulations in engineering and medical applications.
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Table 4: Achieved performance of the WENO kernel (per-core).
Scheme Version Performance (GFLOP/s) Peak fraction [%]

Single-pass
Baseline 9.22 72.0%
Fused 9.93 77.6%

Two-pass
Baseline 9.62 75.2%
Fused 10.30 80.5%

Figure 2: (Left) Volume and isosurface rendering of the pressure (high/low in yellow/orange) and the inter-
faces of the bubble (translucent white) at late stages of the collapse of an array of clouds. (Right) Temporal
evolution of the maximum pressure in the field and on the solid wall and temporal evolution of the normalized
equivalent radius of the cloud (solid blue line)
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ABSTRACT
With the upcoming transition from petascale to exascale comput-
ers radically new methods for scalable and robust computing are
required. Computing at the speed of exascale, that is, more than
1018 floating point operations per second, will only be possible on
systems with millions of processing units. Unfortunately, the large
number of functional components like computing cores, memory
chips and network interfaces will greatly increase the probability
of failures, and it can thus not be expected that an exascale appli-
cation will complete its execution on exactly the same resources it
was started. In this paper, we investigate the impact of unfavorable
process placement and oversubscription of compute resources on
the performance and scalability of typical application workloads
like CP2K, MOM5 and BQCD. We provide results on two HPC
architectures, a Cray XC40 with proprietary Aries network routers
and dragonfly topology, and an InfiniBand cluster.
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1. INTRODUCTION
Current petascale computer installations comprise 105 compute

nodes that are connected by custom network interconnects with a
hierarchical abstraction of the entire machine down to the single-
node level. For exascale computing a couple of architectural is-
sues—also affecting today’s installations already—need to be ap-
proached, two of which are the scalability of the network in terms
of latency and bandwidth across the entire machine, and the steadily
increasing number of compute resources within single nodes con-
trasted with only slightly increasing network and main memory
bandwidths.

Alongside scaling the hardware to exascale, user applications
need to adapt as well, e.g., by utilizing hybrid MPI plus thread-
ing in order to minimize inter-process communication, heteroge-
neous programming involving hardware accelerators as one means
to approach exascale, vectorization (SIMD), parallel I/O, and so-
phisticated load balancing on a final note. For many existing code
bases—possibly even those that are believed to be well optimized
—it might be expected that without appropriate adaption it will not
be possible to use the hardware efficiently. Small imbalances in
the program execution, due to MPI and I/O, for instance, can result
already in a certain amount of compute resources run idle [1].

A further issue is component failure, which becomes more likely
with increasing number of functional units and size of the instal-
lation. Restarting an exascale application after component failure
is expected to work efficiently with in-memory checkpointing to-

gether with, e.g., erasure-coding [2]. Thereby, the restart needs to
happen almost immediately after the crash on an adapted and possi-
bly reduced node allocation. One central question that arises in that
context is whether the restarted application can utilize that alloca-
tion efficiently if the latter is unfavorable? and if not, what can be
done to compensate for that? For exascale computing this question
is relevant twice, first because of an increased component failure
rate and possibly unfavorable resource allocation at restart, which
then in turn might cause additional imbalances throughout the pro-
gram execution, and second, because of the possibility that even
an optimized application cannot fully utilize the available compute
resources of modern processors.

We address these points in this paper targeting two different HPC
systems, which together with the workloads CP2K, MOM5 and
BQCD will be introduced in Section 2 and 3, respectively. In Sec-
tion 4, we investigate the impact of unfavorable process placements
for two of these applications. Section 5 approaches the resource uti-
lization issue, including results for oversubscription and concurrent
program execution.

2. TARGET HPC SYSTEMS
Experiments for which results are reported in this paper have

been carried out on two current HPC systems: a Cray XC40 su-
percomputer and an InfiniBand cluster. Both systems are briefly
described subsequently.

2.1 Cray XC40 with Aries Interconnect
The Cray XC40 integrates the Aries interconnect together with

standard Intel Xeon x86 processors. The XC40 at ZIB comprises a
total of 1128 compute nodes, each of which with two Intel Xeon
E5-2680v3 (Haswell) 12-core CPUs and 64 GiB main memory.
The installation runs SLES 11 with the latest Cray software stack.
The compute resources are hierarchically organized as follows [3]:
a blade contains four compute nodes and one Aries router; 16 blades
form one chassis; Three chassis make up a cabinet, and two cab-
inets form an electrical group. Within the electrical groups com-
munication happens over a two-dimensional all-to-all copper-based
network: communication over the chassis’ backplane in one dimen-
sion, and in the other dimension all-to-all communication within
subgroups given by corresponding nodes in the six chassis belong-
ing to the same electrical group. Electrical groups are connected by
optical links in all-to-all fashion (Figure 1).

Network Characteristics: Node-to-node latencies and bandwidths
for different placements of processes along the layers of the node
hierarchy of the XC40 are listed in Table 1. Values are for both (a)
n = 1 (MPI plus threaded applications, for instance) and (b) n = 24
(pure MPI jobs) pairs of communicating processes that are placed
on different nodes in all cases. For (b) the QPI (QuickPath Inter-
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Figure 1: Schematic of the Cray Aries Interconnect. Communication within electrical
groups happens over a two-dimensional all-to-all copper-based network. Electrical
groups are connected via optical links in all-to-all fashion.

connect) latency adds to the network latency twice, as the network
interface is connected to CPU socket 0 but not 1.

According to Table 1 latencies only slightly decrease from intra-
blade to inter-electrical-group communication, and from n = 1 to
n = 24 groups. Extending the XC40 by additional electrical groups
does not lower the latencies further. Bandwidths are almost homo-
geneous across the entire machine. However, it takes multiple MPI
processes to saturate the network.

2.2 InfiniBand Cluster
The system comprises 32 compute nodes, each of which with

four Intel Xeon E5-4650v2 (Ivy Bridge) 10-core CPUs, 512 GiB
main memory and two Mellanox ConnectX-3 InfiniBand (IB) FDR
ports (the nodes run SLES 11). All nodes are connected via two IB
FDR switches, thereby forming a flat network with at most one hop
for communicating processes.

Latencies reach down to 1.1 µs in case of n = 1 process per node,
and about 7.5 µs for n = 40 (Intel MPI pingpong benchmark 4.0
with Intel MPI 5.0.2 and DAPL fabric). Bandwidths saturate (n =
40) at about 8.8 GiB/s for 1 MiB and 2 MiB packages, and 5.5 GiB/s
for packages larger than 128 MiB—with the OFA dual-rail fabric,
we got comparable values.

3. WORKLOADS
We investigate the impact of unfavorable process placements and

oversubscription on the following workloads: CP2K, MOM5 and

Table 1: Latencies ` (µs) and per-link bandwidths b (GiB/s) of the XC40 network for
n pairs of communicating MPI processes placed along the different layers of the node
hierarchy. Values have been determined with the Intel MPI pingpong benchmark 4.0
with arguments -multi 0 -msglog 26:28 -map n:2 -off_cache -1.
`min, `avg : Minimum resp. average transfer time over {0,1,2,4}-byte packages in µs.
b : Averaged bandwidth over {64,128,256}-MiB packages in GiB/s.

Node-to-Node: n processes per node n=1 n=24
Communicating processes in... `min b `min `avg b
same blade, different node 1.64 8.24(2) 1.75 2.08(1) 9.18(1)
same chassis, different blade 1.78 8.17(2) 1.92 2.29(1) 9.34(1)
same cabinet, different chassis 1.76 8.12(6) 1.86 2.23(1) 9.33(1)
same electrical group, different cabinet 1.78 8.08(7) 1.90 2.26(1) 9.33(1)
different electrical group 2.31 7.60(9) 2.50 2.82(2) 9.45(1)
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Figure 2: Schematic of the InfiniBand cluster. Nodes comprise four 10-core CPUs
each, two Mellanox ConnectX-3 InfiniBand (IB) FDR ports, and are connected via
two FDR IB switches.

BQCD. All three applications are frequently used by a major frac-
tion of ZIB’s user community within HLRN.1

Code compilation is carried out for MOM5 and BQCD using
optimized libraries and the Intel Fortran / C compiler version 15.0.2
on both the XC40 and the IB cluster. The CP2K code is compiled
with the Intel Fortran / C compiler version 13.1.3 using a Haswell-
respectively Ivy Bridge-optimized version of libsmm, and Intel’s
MKL. Codes are built against Cray MPI on the XC40 and Intel
MPI 5.0.2 on the IB cluster.

CP2K is an MPI + OpenMP parallel program to perform atom-
istic and molecular simulations of solid state, liquid, molecular, and
biological systems. It implements density functional theory (DFT)
using a mixed Gaussian and plane waves approach (GPW) and clas-
sical pair and many-body potentials [4].
We use the H2O-1024 input in the CP2K branch with 5MD steps.

MOM5 (Modular Ocean Model) is an MPI parallel program to
perform numerical ocean simulation that is utilized for research and
operations from the coasts to the globe [5].
We use input files for simulating the Baltic Sea with three nautical
miles resolution and adapt the simulated time to our needs.

BQCD (Berlin Quantum Chromodynamics) is a Hybrid Monte
Carlo (HMC) MPI + OpenMP parallel program for the simulation
of lattice QCD with dynamical Wilson fermions [6].
We use the MPP benchmark input in the BQCD branch with a 48×
48× 48× 80 lattice on the XC40, and a 48× 50× 48× 80 lattice
on the IB cluster. For cache sensitive runs, we use a local (per-
process) lattice of size 24×3×4×4.
Note: All three codes have been compiled as MPI-only versions.

4. PROCESS PLACEMENT
With a notably increased number of functional units over recent

and current supercomputers as well as complex software stacks,
exascale systems will be subject to failure rates with potentially
multiple interrupts per hour due to hardware or software crashes.
To recover program execution efficiently, the implementation of
checkpoint/restart needs to be addressed on both the software and
the hardware level. As part of our research on the development of
a fast and fault-tolerant, microkernel based systems infrastructure,
we developed an in-memory checkpointing mechanism that writes
erasure-coded checkpoints to RAM disks [2]. The checkpoints are
application-triggered and hence only few state information needs
to be written which allows very frequent checkpointing. In case of
component failures, the state information of the crashed processes
is re-assembled from the saved erasure-encoded blocks and the pro-
cesses are restarted on other (non-faulty) resources (Figure 3).
1North-German Supercomputing Alliance, www.hlrn.de.
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Figure 3: Restart of an application after a crash. The node allocation after the crash
includes one node in a different cabinet (unfavorable). Node allocations are marked
by semi-transparent gray-colored overlays.

4.1 Communication Behavior
To study the impact of unfavorable process placements on the

application performance, we first determine communication char-
acteristics of CP2K and MOM5 for given inputs. For that purpose,
both applications have been instrumented for sampling and trac-
ing experiments on the XC40 using the Cray Performance Analy-
sis Tool (CrayPAT). On the IB cluster none of the nodes is distin-
guished over the others, because of the flat network

For CP2K, Figure 4 contains average values of the message sizes
and message counts as well as information about the distribution of
differently sized messages. “Small” messages (< 256 B) are those
for which the data transfer is latency bound. Almost all “medium”-
sized messages (256 B..1 MiB) can be assigned to FFT routines.
“Large” messages (>1 MiB) are rare and have their origin in the
user routines.

From the communication matrix in Figure 4, a (next-to-) nearest
neighbor communication scheme can be extracted (see the minor
diagonal pixels; the origin is in the top-left corner). Furthermore,
MPI processes are organized into smaller groups corresponding to
the block structure along the diagonal. It can be deduced that pro-
cesses 0..7 are somehow distinguished as they receive data from all
other processes (gray bar on the left). When scaling up the number
of MPI processes, a gather-scatter scheme becomes obvious with
lower process IDs as the root(s). Placing these distinguished pro-
cesses far away from the other processes may result in degraded
program performance, particularly as the majority of the messages
is latency bound and hence sensitive to being placed, e.g, in differ-
ent electrical groups (see Table 1).

Similar to CP2K, MOM5 exhibits a (next-to-) nearest neighbor
communication pattern. Some neighbor communication paths are

Normalized Communication Costs & Data Transfer Statistics

Receiver (0..63)

Sender (0..63)

CP2K
64 MPI processes

0.0 0.5 1.0

MPI fraction on the total program execution of
CP2K, average per-process message size,

and distribution of differently sized messages
for 512 MPI processes.

H2O-1024, 5MD steps
MPI fraction 22.0%
∅ Msg. size 92kiB
Msg. size count
<256B 3.1M (82%)
256B..1MiB 537k (14%)
>1MiB 142k (4%)

Figure 4: Communication characteristics of CP2K for H2O-1024 input: (left) com-
munication matrix for 64 MPI processes, (right) message size statistics for 512 MPI
processes.

Normalized Communication Costs & Data Transfer Statistics

Receiver (0..119)

Sender (0..119)

0.0 0.5 1.0

MOM5
120 MPI processes

MPI fraction on the total program execution of
MOM5, average per-process message size,

and distribution of differently sized messages
for 256 MPI processes.

Baltic Sea, 10 days
MPI fraction 20.6%
∅ Msg. size 7.3kiB
Msg. size count
<256B 529k (48%)
256B..64kiB 551k (50%)
>64kiB 20k (2%)

Figure 5: Communication characteristics of MOM5 for a Baltic Sea input setup with
10 days of simulated time: (left) communication matrix for 120 MPI processes, (right)
message size statistics for 256 MPI processes.

not present, which might be due to the input itself (here the ge-
ometry of the Baltic Sea area), or because of Cray PAT excluded
data that is below the threshold for being factored into the plot.
The vertical and horizontal lines at the left and top of the matrix
indicate that process 0 is distinguished. In fact, process 0 gathers
simulation data from all other processes throughout the execution
(vertical line). The horizontal line corresponds to a broadcast oper-
ation with process 0 as the root. Unlike CP2K, only half the number
of messages is latency bound (Figure 5). This remains true when
increasing the number of MPI processes. We therefore expect only
minor impact on the program performance in case of unfavorable
placements.

4.2 Unfavorable Process Placements
Table 1 illustrates that on the XC40 only the network latency

varies slightly when placing communicating processes along the
node hierarchy, whereas bandwidths remain almost constant. Unfa-
vorable placements hence are those where processes are “far away,”
that is, they are placed in different electrical groups. Subsequently,
we consider process placements across four cabinets in two elec-
trical groups. The distribution of the processes is encoded into the
string “n1− n2− n3− n4,” where ni refers to the number of pro-
cesses placed in cabinet ci=1,2,3,4—the pairs c1 and c2, and c3 and
c4 form an electrical group each. For both CP2K and MOM5 the
execution is with 512 MPI processes. We use at most 16 instead
of 24 MPI processes per node (symmetrically distribution across
the two CPU sockets) to reduce the pressure on shared per-node
resources, but still have a setup that is meaningful for execution on
the XC40.

According to Figure 6 there are two levels of performance de-
crease for CP2K, and one level for MOM5. For both applications
process 0 is distinguished. For CP2K, processes 1..15 are highly
involved in collective operations, too. Separating these processes
from the others, that is, placing them into another electrical group
(corresponding to “0-1-0-511” .. “0-16-0-496”), causes about 8.4%
and 3.6% longer program execution of CP2K and MOM5, respec-
tively. For CP2K the performance decrease changes from 8.4% to
3.5% when balancing the total of 512 processes among the four
cabinets. The value of 3.6% for MOM5 remains unchanged.

All experiments have been carried out with almost no other users
on the XC40. However, to account for variations of the program
execution times, each data point in Figure 6 is the mean value of
six independent and temporarily separated runs. Within statistical
errors the average execution times for the different placements are
well distinguished. For both CP2K and MOM5, and for the input
considered, the placement of the processes has only little effect on
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Figure 6: Impact of process placement on the program execution time of CP2K (H2O-
1024 input) and MOM5 (Baltic Sea input with 1 month simulated time). The number of
processes in each of four cabinets is encoded into the string “n1−n2−n3−n4,” where
ni refers to the number of processes in cabinet i. In all cases: n1 +n2 +n3 +n4 = 512.

the program performance, and will be covered up by about 10%
variation of the runtime in case of multiple jobs running on the
machine side by side.

Regarding application checkpointing, component or node fail-
ures can be approached by restarting the execution on an adapted
node allocation without concerning too much about performance
losses because of an “unfavorable” allocation. The process place-
ment at restart, however, should incorporate information about dis-
tinguished processes which should not be isolated from the other
processes because of potentially longer program execution (Fig-
ure 6). This can be achieved, for instance, via rank re-ordering.

5. RESOURCE (UNDER)UTILIZATION
The execution of an MPI application for a given input will be

dominated by MPI when increasing the number of MPI processes
(strong-scaling). Figure 7 illustrates the fraction of MPI on the pro-
gram execution time for the workloads CP2K, MOM5 and BQCD.
For all three applications calls to MPI_Wait have the highest per-
centage on MPI (more than 50% for MOM5 and CP2K, and about
30% for BQCD). For the latter, we included the imbalance (Tavg−
Tmin)/Tmax (reported by CrayPAT) into Figure 7—note that the im-
pact of “stragglers” can result in high values here. Both the increase
of MPI and the non-negligible fraction of MPI_Wait together with
imbalances around 40% suggest the assumption that compute re-
sources will be underutilized then. In a wider sense one may ask
the question whether it is possible at all with current (HPC) codes
to scale to thousands or millions of processors and at the same time
make efficient use of the hardware.

5.1 Oversubscription
The idea behind oversubscription (of CPU resources) is to place

more threads or processes (just processes hereafter) on the CPU
cores than there are hardware threads available for execution in or-
der to exploit modern CPU’s parallel processing capabilities more
effectively as is possible with only one process per hardware thread
[7]. Processes that run idle then can be interleaved with others that
are ready for execution, thereby reducing CPU idle cycles. On the
other hand, CPU resources like the caches are shared among these
processes, potentially causing increased cache miss rates.

Another way to achieving a better utilization of the CPU re-
sources is simultaneous multithreading (SMT) like Intel’s Hyper-
Threading (HT) [1]. While caches are shared among the two hard-
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Figure 7: Fraction of MPI on the program execution time, and imbalance of
MPI_Wait for CP2K, MOM5 and BQCD with different numbers of MPI processes.

ware threads per CPU core, HT adds two architectural states as well
as duplicated register sets to each core. However, the two hardware
threads share one CPU core for execution. In a certain sense, using
HT is akin to oversubscribing the CPU’s compute resources partly.

Subsequently, we distinguish the following cases

• no oversubscription is used for program execution (no-OS),
• Hyper-Threading is utilized (HT-OS), and
• hardware threads are two-fold oversubscribed (2x-OS).

The mapping of processes to hardware threads in current Intel Xeon
processors with Hyper-Threading is illustrated in Figure 8. For a
given number of processes N, HT-OS and 2x-OS require only half
the number of compute nodes compared to no-OS. The question is:
Does the execution time increase by a factor two or more for HT-
OS and 2x-OS, respectively? If not, CPU resources run idle in the
no-OS case.

Figure 9 illustrates the strong-scaling behavior of CP2K, MOM5
and BQCD on the XC40 and the IB cluster. In case of no-OS 24
respectively 40 processes reside on the nodes of the XC40 and IB
cluster. For HT-OS and 2x-OS the number of processes per node is
48 and 80 on XC40 and the IB cluster, respectively.

While BQCD scales perfectly with the number of MPI processes
on both systems, for CP2K and MOM5 the scaling is acceptable
only on the XC40. The growth of MPI on the program execution
when increasing the number of MPI processes, as well as imbal-
ances in the user and the MPI portion prevents better scaling. On
both the XC40 and the IB cluster the increase of the execution time
of CP2K and MOM5 hence is lower than a factor two in case of
HT-OS. Unlike 2x-OS, the two processes per CPU core are inter-
leaved by the CPU itself in hardware, thereby reducing idle cycles
effectively. In case of 2x-OS, the operating system switches be-
tween the two processes per hardware thread, which happens with
milli-second granularity. In addition to a less effective reduction
of idle cycles, the context switch adds some overhead, e.g., cache
invalidation. All in all, 2x-OS does not work for CP2K and MOM5.

Mapping of Processes to Hardware Threads

HT0
HT1

no-OS HT-OS 2x-OS

4 processes on
4 hardware threads

8 processes on
8 hardware threads

8 processes on
4 hardware threads

Figure 8: Mapping of processes to hardware threads for no-OS, HT-OS and 2x-OS.
The CPU considered here supports Hyper-Threading and has four CPU cores.
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Figure 9: Strong-scaling of CP2K, MOM5 and BQCD for different numbers of MPI
processes. In case of no-OS (see text) 24 respectively 40 MPI processes reside on the
compute nodes of the XC40 and the IB cluster. With HT-OS and 2x-OS only half the
number of compute nodes is required with 48 respectively 80 processes per node.

For BQCD, the utilization of the CPU is already high. Using
the HT-OS scheme on the XC40 results in a factor two higher ex-
ecution times compared to no-OS. The difference between HT-OS
and 2x-OS is immaterial on the XC40 for BQCD. Using HT-OS on
the IB cluster gives only slightly increase performance over no-OS,
whereas 2x-OS results in an effective performance loss.

Cache utilization: Figure 10 illustrates hit rates for the L1 + L2
data cache and the shared L3 cache on the XC40 for CP2K, MOM5
and BQCD (values have been determined with CrayPAT and PAPI).
While the L3 cache is shared among all cores of the CPU, the L1
and L2 (data) cache is core-exclusive. Placing two processes on
each of the CPU cores results for HT-OS in an effective reduction
of the L1 and L2 cache sizes and potentially in decreased hit rates
due to mutual cache pollution. In case of 2x-OS two processes are
mapped to one hardware thread and context switching is performed
by the operating system. The interleaving of the process executions
in that case happens on a much coarser granularity, thereby render-
ing the L1 and L2 cache more or less process-exclusive. Hit rates
for the L1 + L2 data cache therefore are lower for HT-OS, while
those for 2x-OS are almost equal to no-OS hit rates.

Cache hit rates: L1 + L2 Data Cache & L3 Cache
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Figure 10: Cache hit rates for L1+L2 data cache and the shared L3 cache of the Intel
Xeon processors on the XC40. Values have been determined with CrayPAT and PAPI.

L3 cache hit rates vary only slightly between no-OS, HT-OS
and 2x-OS. For CP2K and BQCD the HT-OS scheme slightly im-
proves the L3 cache utilization. An interesting result is that even
for BQCD and a cache sensitive input (24× 3× 4× 4 per-process
lattice) the L3 hit rate does not reduce measurably when using HT-
OS or 2x-OS.

5.2 Concurrent Program Execution
According to Figure 9 both CP2K and MOM5 show an effective

performance gain when using the HT-OS scheme: the execution
time on N/2 compute nodes with 48 processes on the XC40 in-
creases by less than a factor two compared to the execution on N
nodes with 24 processes. However, using N compute nodes with
48 processes does not lower the program execution time. That is,
for a given node allocation none of CP2K, MOM5 and BQCD can
benefit from using both hardware threads per core—a standing rea-
son for that is the increased number of MPI processes in that case,
causing additional MPI communication overhead. But, can two in-
dependent applications run concurrently on the hardware threads
in less time than executing them one after another?

In a first step we overlap each application with itself using HT-
OS, that is, two program instances with the same characteristics and
bottlenecks run simultaneously (one on HT0 and the other on HT1),
giving execution times T1 and T2. We state, that if the concurrent
execution is faster than the sequential execution of the two pro-
gram instances, that is, if T|| = max(T1,T2) < Tseq, the application
is a potential candidate for being placed beside another application.
Results for CP2K, MOM5 and BQCD are illustrated in Figure 11:
CP2K + CP2K, MOM5 + MOM5 and BQCD + BQCD. The cache-
sensitive input for BQCD is marked by the star (“?”). For all ap-
plications we can note a speedup Tseq/T|| larger than one except for
BQCD with the cache-sensitive input. These observations meet our
expectations as in the previous sub-section we noted that none of
CP2K and MOM5 can fully utilize the compute resources on both
the XC40 and the IB cluster. For these two applications we actu-
ally observe speedups up to 20%, whereas for BQCD it is at most
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Performance Gain due to Concurrent Program Execution
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Figure 11: Performance gain due to a concurrent execution of CP2K, MOM5 and
BQCD. In the concurrent case two applications run simultaneously on the same node
allocation: one on HT0 and the other on HT1. The speedup values are the ratio of
the sequential execution time for running the two applications one after another, and
the concurrent execution time (see text). For BQCD we additionally consider a cache-
sensitive setup, marked by the star (“?”). For all combinations we use 24 and 40 MPI
processes per node and application on the XC40 and the IB cluster, respectively.

10% for the input that is not sensitive to the cache. For the cache-
sensitive input the concurrent execution on the XC40 takes slightly
longer than the sequential execution. On the IB cluster we do not
see any differences between the two BQCD inputs.

Figure 11 also illustrates the results for the concurrent execution
of different applications. For the respective runs, we adapted ei-
ther the number of MC steps for BQCD or the simulated time for
MOM5 so as to achieve T1 ≈ T2, that is, almost 100% overlapping
program execution—Tseq has been determined for these adapted
inputs. Again for all combinations, except those involving BQCD
and the cache-sensitive input, the performance gain over the se-
quential execution is larger than one. The tendency is towards a
larger gain with increasing number of MPI processes. One reason
for that is the decrease of the resource utilization when increasing
the number of processes, as suggested by Figure 7.

6. CONCLUSION
In this paper we presented the impact of unfavorable process

placements and oversubscription on the program performance for

workloads CP2K, MOM5 and BQCD and selected inputs. Our re-
sults on the XC40 show that the increase of the runtime when plac-
ing distinguished processes far away from the remaining ones is
within 10% compared to all processes close to each other. Within
variations of the program execution times due to other users’ work-
loads, this value is more or less insignificant. Our oversubscrip-
tion experiments show that two processes per hardware CPU thread
cause more than a factor two performance degradation compared to
no oversubscription. Using Hyper-Threading (HT), however, the
program performance of all workloads could be improved. For
the concurrent execution of two applications, one on HT0 and the
other on HT1, we found an overall performance gain in the major-
ity of cases. Our investigations suggest the assumption that in the
strong-scaling case MPI wait cycles together with imbalances due
to access to shared compute resource cause an increase of CPU idle
cycles, that, e.g., via HT, can be effectively reduced. Further inves-
tigations, however, are necessary to better understand, e.g, the role
of caches in these scenarios, which we already started in this paper.
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ABSTRACT 
We present a numerical tool for large-scale 3D radiative transport 
simulations related to high energy density plasmas (HEDP). 
Angular non-uniformity of photon distribution function can be 
accounted in second-order self-adjoint transport equation. We 
apply DG procedure to self-adjoint transport equation which leads 
to a set of elliptic-type equations. They may be solved 
independently giving good opportunity for using of any paradigm 
of parallelization. Note that accurate simulation requires the value 
of tens to hundreds for both M (the number of spectral groups) 
and N (the number of quadrature points on a sphere). Spatial 
discretization yields linear system with a symmetric positive 
definite matrix allowing application of effective linear solvers 
(Krylov solvers or Chebyshev - Richardson iterations). The 
energy balance is calculated via numerical radiative fluxes which 
are restored from discrete photon distributions by means of 
special quadratures for radiative fluxes. The numerical algorithm 
was incorporated into the scientific CFD code MARPLE3D 
(Keldysh Institute of Applied Mathematics – KIAM). We 
employed mixed element computational meshes (hexahedral, 
tetrahedral, prismatic cells and their combinations) up to tens 
million cells. Numerical experiments demonstrated good 
scalability at KIAM RAS K-100 scalable GPGPU-based hybrid 
computing system. We have obtained robust numerical procedures 
suitable for multiscale simulations in finely discretized 
computational domains. It's a promising technique for upcoming 
exaflop computing.  

Keywords 
Radiative transport, high-temperature plasmas, numerical 
simulation, unstructured mesh, high-performance computing. 

1. INTRODUCTION 
Due to the expected advent of computer systems with a 
performance level of about a hundred petaflops, and up to one 
exaflops in the foreseeable future, we have an additional 
motivation for the development of new numerical methods. Along 
with the traditional requirements of high precision, algorithm 
uniformity, solution monotonicity, "low-cost" calculation 
performance, etc. a special attention should be paid to the efficient 
use of high-performance computing systems. Special important 
direction of this kind of work is a design of algorithms proper for 
hybrid CPU-GPU parallel systems.  

The matter of our research is to provide a parallel technique for 
solution of the radiative transfer equation possessing such 

qualities which can satisfy requirements put forward due to 
necessity of a renovation of those program tools which are 
developed for a numerical analysis of experiments now carried 
out worldwide in the field of high energy density plasmas. 

Here we present a new parallel technique of three-dimensional 
modeling of energy transfer caused by a thermal radiation in a 
gaseous matter heated up to appropriate temperature. The word 
"appropriate" means that the radiative energy fluxes significantly 
affect the energy balance in matter. The technique has the 
necessary qualities for use in software for predictive modeling of 
high-density energy plasmas. Meeting the challenges of a given 
subject area related to the consideration of a large set of non-
linear processes ("multiphysics") is very difficult in the sense of 
providing high quality relevant computer models and high cost in 
terms of resources required and the performance of computers, 
which is a consequence of the different scales of structures and 
strong interdependence of hydrodynamic, thermal and radiative 
processes in the high-temperature plasma. These tasks are actively 
studied in connection with investigations of extreme states of 
matter in laboratory and natural conditions, the development of 
small-scale technologies, biomedical applications and others. 

One of the most popular approaches to the calculation of the 
thermal radiation of the dense high-temperature plasma is the 
solution of the transport equation in the form of "diffusion" of 
radiation [1]. Diffusion model, along with the linear dependence 
of the flow of radiant energy from the temperature gradient 
environment includes the exact energy balance equation, which 
provides it with a wide range of applicability. However, the 
validity of using the diffusion model is justified only for the 
media in a state of local thermodynamic equilibrium [1, 2]. 
Various modifications of the "gradient" approximation for the 
flow of energy through the semi-empirical correction factors make 
the diffusion model significantly depending on specific 
conditions. 

Having in mind the possibilities of modern high-performance 
systems, we can consider the direct solution of the transport 
equation of the photons, in the general case of three-dimensional 
space and two-dimensional angular variables. The general 
solution of the transport equation [1] can be used to calculate the 
radiation intensity along the characteristics ("rays"). To achieve a 
good quality of such a calculation it is required to link all pairs of 
cells in the computational domain by the rays of different families 
(the angular variables), so they can "share" the photon flux. 
Otherwise there is a risk of loss of accuracy in the numerical 
"beam effect" when the photons emitted in some intensely 
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radiating subdomain does not affect the energy balance in the 
other subdomains [2]. Experimental evaluation conducted for 
various unstructured computational grids show that acceptable 
accuracy calculation of grid-characteristic method is very costly. 
In addition, the corresponding algorithm does not scale well in the 
case of the parallel solution of a general system of equations of 
radiation plasmodynamics geometric domain decomposition. 

Other known approaches to solving the problems of radiation in 
hydrodynamics (methods of spherical harmonic, moments, 
discrete ordinates, etc.) are also not free from the said drawbacks 
to a greater or lesser extent. If one needs a full account of 
heterogeneity of the environment, or the angular distribution of 
the radiation intensity, these methods are either not applicable or 
quite costly [2, 3]. 

For these reasons, with the aim to develop software for predictive 
modeling of high energy density plasma with highly variable 
emissivity and absorption coefficients, it's advisable to look for a 
replacement of diffusion and grid-characteristic methods for 
calculation of the radiation field. 

Computational algorithm with good scalability, which, besides all, 
accounts for the angular dependence of the photon distribution 
function (or emission intensity), and significantly reduces the 
negative impact of "beam effect" can be built, if the original 
problem for the first order transport equation is replaced by the 
problem for the second-order equation with self-adjoint 
differential operator. And such passing from the original equation 
to the transformed one is possible. In 1951, V. Vladimirov [4] 
proposed a variational principle for velocity transport equation 
and studied classical correct formulation of the problem for the 
transport equation of the second order. In 1986, B. Chetverushkin 
[2] proposed to use similar approach for solving problems of 
radiative heat transfer, and showed in numerical experiments with 
model tasks practical suppression of the "beam effect" at moderate 
computational cost when solving transport problems using this 
method. In this paper, we propose the development of the 
technique [2] for the implementation on multiprocessor 
computers. 

2. SELF-ADJOINT EQUATION OF 
RADIATIVE TRANSFER  
Generally radiative transfer processes are analyzed by means of a 
stationary transport equation for the spectral radiation intensity 

( ) ( ), , , , ,I d d h c f v t d d
ν

ν ν νΩ = ⋅ Ωr rΩ Ω  

which can be written as: 

( )( ) ( ) ( ) ( ) , , ,I I Jν ν ν νλ ∇ + =r r r rΩ Ω Ω  (1) 

where we use common notations: 

f is a photon distribution function which arguments are the radius 
vector of the observation point, photon frequency ν, direction of a 
photon movement Ω and time t, λ = 1 / χ is the photon mean free 
path (i.e. the reciprocal of the opacity coefficient χ), and Jν is 
emissivity coefficient per unit volume of a substance (the amount 
of energy emitted per unit time in one steradian). In many cases of 
practical importance it is possible to assume that the emissivity 
depends only on a thermodynamic state of a substance, and almost 
has no dependence on the radiative intensity. Optical properties of 
a radiative medium are strongly depend on its density and 
temperature, and can vary for different frequency bands of the 

emitted/absorbed photons. Having the radiative intensity 
distribution over space and angle variables one can account for the 
radiative heat transfer, radiative losses or contributions into the 
energy balance of a plasma substance using expressions for the 
radiation energy density U and radiation flux W: 

4 4

0 0 0 0

1
 ,  .U Id d Id d

c

π π

ν ν
∞ ∞

= Ω = Ω∫ ∫ ∫ ∫W Ω  

The effect of radiation on the energy of matter can be described 
by introducing a source term into the energy balance equation: 

= divRadQ − W . 

In certain cases (astrophysical problems, etc.) plasmodynamic 
model also includes the effect of the momentum carried by the 
photons, but this is a question we have not discussed, because it 
has no direct relation to the contents of this work. 

An essential element of the radiation field description in 
multicharged plasmas is a multigroup approach. It is used as a tool 
for reasonably adequate representation of opacities and 
emissivities corresponding to different parts of the spectrum. 
Sometimes a multigroup model is used in certain computational 
procedures aimed at iterative refinement of photon absorption 
coefficients depending on the calculated intensity distribution (see 
[3] for quasi-diffusion or Eddington factor method). The essence 
of this widespread approach is the superposition principle, which 
is valid for the equation (1) by virtue of its linearity. 

A total range of most representative photon frequencies 
(necessary to achieve the goals of modeling) is divided into M 

intervals (frequency groups) 
1 i M
=0<...< <...< <ν ν ν ∞ , the 

transport equation (1) is solved for each group of this partition. To 
solve the equation (1) we use integral values of the intensity and 
spectral energy for the group i: 

1 1

[ ] [ ] (1 )., , 
i i

i i
i i i MI I d U U d

ν ν

ν ν
ν ν

ν ν
+ +

≤ ≤= =∫ ∫
 

It is assumed that the opacity (absorption) and emissivity 
coefficients within each group are independent of the photon 
energy: 

[ ] 1( , , ) ( , ) when .ii iT Tνχ ρ ν χ ρ ν ν ν += < <  

The total intensity of the radiated energy is calculated by 
summing over spectral groups: 

[ ]
10

( , , )
M

i
i

I t I d I
ν
ν

∞

=

Ω = =∑∫r . 

For correct calculation of the energy balance we need, as a rule, 
just a few tens of spectral bands. In situations where the principal 
studied object is the emitted radiation spectrum essentially finer 
spectrum representation may be required, i.e. for more precise 
analysis we may need several hundred or even thousand spectral 
groups. Calculations for some spectral group are implemented 
independently from the others. The calculation formulas for all 
spectral intervals are identical and differ only in the values of 
emissivity and opacity coefficients. 
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A self-adjoint equation (2) can be obtained via replacing a photon 
emissivity function in (1) according the following formula 

( ) ( )
( )

( ) ( )1, , ,I
r

ϕ ϕ
κ

= − ∇r r rrΩ Ω Ω Ω  

The auxiliary function φ is symmetric: ( ) ( ), ,ϕ ϕ− =r rΩ Ω , 

and satisfies the differential equation 

( )
( ) ( )

( ) ( ) ( ) ( )

1div( grad , )

, J

ϕ
χ

χ ϕ χ

− +

+ =

D r
r

r r r r

Ω Ω

Ω

 (2) 

where ( ) ( ) ij i jD⊗ =ΩΩD Ω Ω Ω=  is a dyadic or tensor 

product of two vectors. 

Boundary condition proper to (2) takes the appearance:  

( )
( ) ( ) ( ) ( )1 grad , , 0ϕ ϕ

χ
− ⋅ =n D r n r

r
Ω Ω Ω Ω  

when ( ) 0,  ⋅ <n nΩ  is the outward normal to the boundary 
(zero income flux). 

To make differencing in the space of angular variables we use 
quadrature formulas by V. I. Lebedev, developed for calculations 
on the spherical surfaces [5], which are a set of angular directions 

{ } 1

N

k k=
ω  with weights αk. To construct a difference scheme we 

assume that within each solid angle, resulting from such partition, 
a value of φ does not depend on the angular variables. Thus we 
get a set of N self-adjoint equations for N variables φk with its 
own tensor D(ωk) for each quadrature node ωk. 

Specific radiation energy is calculated by numerical integration by 
means of these quadrature nodes  
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Source term in the energy balance equation can be found from the 
equation (2), without resorting to numerical differentiation: 

( ) ( ) ( )( )= divRadQ J Uχ− = −W r r r . 

Additionally, this model allows calculating the intensity of the 
radiation in the desired direction: 

( ) ( )
( )

( )1, grad .k k k kI ω ϕ ω ϕ
χ

= −r r r
r

 

For the numerical implementation of the considered model it is 
necessary to solve a set of (M×N) independent elliptic type 
equations (M is the number of spectral bands, N is the number of 
quadrature points on the sphere). Every equation is solved 
independently from the others, which makes good opportunity for 
parallel computations of various types, including hybrid systems 
using traditional central processors and graphics accelerators. One 
should appreciate that to ensure adequate calculation accuracy the 
value of M and N can be several tens or even hundreds. A spatial 
difference approximation to the equation (2) results in a system of 
linear equations with a symmetric positive defined matrix, which 
allows solving the system using effective iteration methods, e.g. a 
technique based on Krylov subspaces, or explicit Richardson 
iterations with Chebyshev set of parameters. 

Each of these elliptic equations has the appearance 
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where (Ωx, Ωy, Ωz) are the direction cosines of the corresponding 
angular direction, and χ and J are individual for each spectral 
interval. 

To discretize the equation (3) we use one variant of the known 
Galerkin method with discontinuous basis functions for the 
variables defined in the grid cells. In the case of a regular 
rectangular grid this procedure provides a difference scheme on a 
template with 27 nodes. If we use a grid with irregular structure 
(unstructured) a template includes all cells having a common node 
with the central cell. 

An important feature of our algorithm is a preliminary 
transformation of rotation, which is applied to the elliptic equation 
(3): (Ωx, Ωy, Ωz) → (1, 0, 0). By means of this transformation we 
exclude from the equation (3) mixed derivatives with respect to 
spatial variables, thereby the structures corresponding to its 
difference analogue are greatly simplified which significantly 
contributes to the acceleration of iterative processes of solving the 
equation (3). 

3. NUMERICAL RESULTS 
The technique of radiative transport calculation has been 
implemented as a part of an object-oriented code MARPLE3D [6] 
developed in KIAM RAS for numerical investigation of problems 
in the field of radiative magnetogasdynamics at massively parallel 
systems of a cluster type. Numerical experiments on testing of the 
technique have been carried out at a scalable GPGPU hybrid 
cluster K-100 (KIAM, Moscow). 

Let’s consider some test examples used for a 
accuracy/convergence study with respect to spatial and angular 
variables. Test studies were performed using 3D meshes of 
different element types (tetrahedrons, cubes, triangular prisms). 
Calculations of integral values (radiation energy per unit volume, 
radiative flux, etc.) were done via quadrature formulas with 
angular directions varied from 1 to 21 in the octant. For solving 
appropriate linear equation systems we have used BICGSstab - 
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biconjugate gradient method with stabilization, in combination 
with symmetric Gauss-Seidel preconditioner. 

Here we present some results of numerical experiments. The test 
problem relates to the radiation produced by a body having the 
form of an infinite cylinder of a given radius, filled with a 
substance which emissivity and the absorption coefficient are 
constant, and outside of a cylinder these coefficients are equal to 
zero. We have calculated radiation intensity and radiation energy 
flux. Here numerical results are compared versus analytical 
solutions (see Figure 1). 

Further improvement of the numerical solution accuracy without 
increasing the number of angular directions can be achieved by 
making refinement of the spatial grid. Owing to the rotation 
transformation marked above the number of iterations decreased 
by a factor of 2 or 3 as compared with the original equation 
including cross derivatives.  

We have found that the proposed method correctly reproduces the 
limiting cases: completely isotropic radiation (no "beam effect" – 
see Figure 2) and propagation of a "laser beam" with the acute δ-
shaped angular distribution in absorbing media. In the latter case 
the use of the rotation transformation not only reduces the number 
of iterations, but also eliminates the "numerical diffraction" effect 
and allows adequate simulating the extremely anisotropic 
radiation distributions (see Figure 3).  

4. CONCLUSIONS 
Angular non-uniformity of photon distribution function can be 
accounted effectively by means of a second-order self-adjoint 
transport equation. DG procedure to self-adjoint transport 
equation leads to a set of (MxN) elliptic-type equations. They may 
be solved independently giving good opportunity for using of any 
parallelization paradigm. Accurate simulation requires the value 
of tens to hundreds for both M (the number of spectral groups) 
and N (the number of quadrature points on a sphere). Spatial 
discretization yields linear system with a symmetric positive 
definite matrix allowing application of effective linear solvers. 

Numerical experiments demonstrate good scalability at KIAM 
RAS K-100 scalable GPGPU based hybrid computing system. 
Best performance is achieved in configuration 1CPU+1GPU. 
Speedup is 1.5 for the entire linear system solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Convergence of the solutions with increasing 

number of angular directions: 1 - maximum and minimum 
(depending on direction) the number of iterations of the 

original form of the equation (3); 2 - maximum and minimum 
(depending on direction) after the number of iterations of 

rotation;  
3 - relative error in the solution. 
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Figure 2. Isotropic radiation of a solid sphere R = 0.1:  
χ = 10, J = 10 when r < R; χ = 1, J = 0.00025 when r > R.  

21 angular directions in an octant. 

 

 
Figure 3. Uniform beam propagation in preferential direction. 

 χ = 1, J = 0 inside the domain;  
incident beam: direction Ω = (0.707, 0.707, 0),  

J = 100, d = 0.05, center at the boundary point (-0.5, 0, 0). 

 

The advantages of the algorithm:  

– Symmetrical self-adjoint equation replaces initial unsymmetrical 
transport equation. Thus the solution of the problem is equivalent 
to finding the minimum of a certain functional [4]. 

– Scalability of the method is determined by the choice of linear 
solver. The state-of-the-art linear solvers are efficient and 
permanently developing. 

We have obtained robust numerical procedure suitable for 
multiscale simulations in finely discretized computational 
domains. It's a promising technique for upcoming exaflop 
computing. 

5. ACKNOWLEDGMENTS 
The work was supported by RFBR grants 14-01-00678 and 15-01-
06195. 

The computations were carried out at supercomputers K-100 
(KIAM RAS), Lomonosov (RCC MSU), MVS-100K (JSCC 
RAS). 

6. REFERENCES 
[1] Ya. B. Zel'dovich and Yu. P. Raiser. Physics of Shock 

Waves and High-Temperature Hydrodynamic Phenomena. 
Moscow, Fizmatlit, 2008. 

[2] B. N. Chetverushkin Mathematical modeling of problems in 
the radiative gas dynamics. Moscow, Science, 1985. 

[3] S. T. Surzhikov Thermal radiation of gases and plasma. M.: 
N. Baumann Technical State University, 2004. 

[4] V. S. Vladimirov, Mathematical problems of one-velocity 
transport theory. Proceedings of the Steklov Institute of 
Mathematics. VI Steklov. Moscow, 1961, p. 158. 

[5] V. I. Lebedev. About squaring at a spherical surface// 
Computational Mathematics and Mathematical Physics, 
Volume 16, № 2 - Moscow, 1976, pp 293-306. 

[6] V. Gasilov et al. Towards an Application of High-
performance Computer Systems to 3D Simulations of High 
Energy Density Plasmas in Z-Pinches. In: Applications, 
Tools and Techniques on the Road to Exascale Computing. 
IOS Press, “Advances in parallel Computing”, 2012, Vol. 22, 
p. 235-242. 

 
 
 
 
 
 
 
 
 

 

Proceedings of the 3rd International Conference on Exascale Applications and Software 23

Radiative Transfer Modeling at High Performance 
Computers Using Self-Adjoint Transport Equation Olkhovskaya, Chetverushkin & Gasilov



Ensuring Efficiency of Exascale Supercomputer Centers 
 

Vladimir Voevodin 
RCC MSU 

119234, Leninskie Gory, 1, bld. 4  
Moscow, Russia 

+7-495-939-51-66 
voevodin@parallel.ru 

Vadim Voevodin 
RCC MSU 

119234, Leninskie Gory, 1, bld. 4  
Moscow, Russia 

+7-495-939-52-16 
vadim@parallel.ru 

 
ABSTRACT 
In this paper, we describe a set of systems aimed to ensure 
efficiency of supercomputer centers at every level of concern. 
This includes application and cluster performance monitoring and 
analysis, user and resource management, supercomputer reliability 
and viability. Each system is addressed to solve one particular 
field of research, but they are designed to be interrelated allowing 
for more holistic and deep efficiency analysis overall.  

Keywords 
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1. INTRODUCTION 
We are used to the colossal abilities of supercomputers and expect 
corresponding returns from them. These expectations may be 
justified, but real life is not always so favorable. Everyone is 
aware of how poorly supercomputers perform on real-life 
applications: in most cases it’s at just a small percentage of the 
peak performance characteristics. But only a few actually suspect 
what the efficiency of a supercomputing center is in general [1]. 
While a supercomputer is about as efficient as a steam engine for 
a single application, the efficiency of an entire supercomputing 
center is only a fraction of that figure. While losses may be barely 
visible at each specific step, they increase manifold as multiple 
user applications are processed. No detail is too small here, and 
every element of a supercomputing center must be reviewed 
thoroughly – from the task queuing policy and the application 
flow structure to system software setup and the efficient operation 
of engineering infrastructure.  

The efficiency of supercomputing applications is only one aspect 
of the issue. An equally important issue today is control over the 
proper operation of the computing environment of 
supercomputing systems. The main reason is the unprecedented 
growth of parallelism degree. Thousands of users and 
applications, hundreds of thousands of computing nodes, 
processors, accelerators, ports, cables, software and hardware 
components, millions of processing cores, processes, events, 
messages… And all this has to work in complete harmony as a 
single system. A task scheduler hangs – and powerful resources 
are wasted idling. An error occurred in a single InfiniBand cable 
resulting in many broken and resent packets – and application 
performance drops (and this usually goes unnoticed by users). 
Skillful control over the state of supercomputer components is 
needed to promptly detect and isolate failures and errors. This 
control is a daunting task, due to the immense set of components 

to be monitored. But the main challenge is to ensure complete and 
continual monitoring. Such efficiency-related issues are important 
today, but their importance will grow significantly for future 
exascale supercomputers [2].  

To ensure the efficiency of large supercomputing centers, we use 
an approach based on a set of interrelated software systems, 
technologies and instruments. It is designed for a coordinated 
analysis of the entire hierarchy of a supercomputing center: from 
hardware and operating system to users and their applications. 
This analysis requires going through both system level (CPU-
related data, network performance, I/O operations, memory 
subsystem, etc.) and the upper level of entire supercomputing 
center (users, applications, queues, task flows, supercomputer 
sections, etc.). 

The paper is organized as follows. Next section includes brief 
description some of the most interesting researches and tools for 
the discussed and related problems. In section 3 we propose set of 
software systems intended for ensuring efficiency, with each 
system described in separate subsection. Finally, last section 
contains conclusions and acknowledgments. 

2. RELATED WORK 
Our suggested approach touches upon a number of issues related 
to the efficiency of supercomputer systems. These can be logically 
broken down into several areas – monitoring, system reliability 
and viability, efficiency analysis of individual user applications 
and the entire supercomputer system. Each of these areas has been 
thoroughly studied individually. We will cite several important 
works that touch upon related issues in each case. It should be 
mentioned that all these systems are intended to address one of the 
selected areas, while our ultimate goal is to create a single set of 
interrelated solutions that helps analyzing all aspects of cluster 
system’s efficiency. 

There are many systems for distributed monitoring of the status of 
a computing system. Some of the most common names in the 
HPC area are open source solutions such as Ganglia, Nagios, 
Zabbix, Zenoss [3], as well as various commercial software suites, 
like HP Network Node Manager [4], ClustrX [5], etc. 

A large set of issues is related to comprehensive behavior analysis 
of individual applications. Different methods are used for this 
purpose (tracing, profiling, emulating program execution, etc.), 
and a number of effective tools have been developed which apply 
these approaches in the HPC area. These include, for example, 
Intel Vtune and Intel Parallel Studio XE [6], Scalasca, Vampir, 
Score-P [7], Valgrind, and many others.  

In addition to analysis of the behavior of individual programs, it is 
also needed to analyze the efficiency of the entire system.  In 
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particular, the issue of analyzing the task flow structure to check 
for optimization is of interest. Performing this analysis requires, 
for example, a flow analysis method [8] (comparing to threshold 
values), even though this approach is often limited to visual 
analysis, and is provided by modern scheduling tools such as 
LoadLeveler [9], Torque, Cleo[10] and Bright Cluster Manager 
[11]. 

Two other issues stand somewhat apart. The first is the issue of 
ensuring the reliability and viability of the system, which is not 
directly related to efficiency but can affect it substantially. Many 
theoretical aspects are shown in [12]. From a practical point of 
view, the monitoring systems mentioned above are responsible for 
tracking the current status of the cluster. However, other issues are 
equally important, such as failure predictions [13,14], or various 
approaches to identifying the true causes of failures [15,16,17]. 

Another issue not directly related to efficiency, but also of great 
importance, is that of visualizing the status of the supercomputer 
in general, or its individual components. Existing solutions 
include the aforementioned monitoring systems, which often can 
visualize the data, and specialized tools and libraries for data 
visualization, such as RAW, D3 [18], canvasjs, Gephi [19] and 
others. 

3. THE SET OF SOFTWARE SYSTEMS 
System-level data is collected by the total monitoring system. 
Ensuring the efficient functioning of a supercomputing center 
requires monitoring absolutely everything that happens inside the 
supercomputer, and that task alone requires sifting through tons of 
data. Even for the relatively small “Lomonosov” supercomputer at 
the Moscow State University (1.7 Pflops peak, 100 racks, 12K 
nodes, 50K cores) [20], the necessary data arrive at the rate of 120 
Mbytes/s (about 30 different metrics analyzed for each node, 
measured at the frequencies of 0.01-1.00 Hz). It means 3+ Pbytes 
for 365 days of a year. This is an incredibly large amount of data 
which must be collected with a minimum impact on application 
performance. A total monitoring system can be built by reaching a 
reasonable compromise on two key issues: what data must be 

stored in the database, and when should it be analyzed.  

Basically monitoring data is used in other systems, but some 
analysis can also be made based only on data itself. For example, 
fig.1 shows distribution of usually abnormal LoadAVG values for 
different partitions of Chebyshev supercomputer. LoadAVG 
measures the amount of work being performed on one node 
during some period, so in most cases this value does not exceed 8 
(since each node has 8 cores) or 16 (if HyperThreading is used). It 
can be seen that surprisingly often LoadAVG exceeds value of 16, 
which means that some side activity happens rather often. This is 
a reason for administrator to pay attention to this issue. 

A modern supercomputing center is not only about managing 
supercomputers per se – this function has been studied well 
enough already – but about efficiently organizing a multitude of 
adjacent issues: managing software licenses, user quotas, project 
registration and maintenance, technical support, tracking warranty 
and post-warranty service and repairs, and many other tasks. All 
these issues are closely linked to one another and, given the 
number of components, it is clear how hard it is to efficiently 
organize work flows and maintain the entire supercomputing 
center in an up-to-date condition.  

The OctoShell system combines data on all critical components 
for efficiently operating a supercomputing center, describing their 
current state and connections between components: the hardware 
and software components being utilized, users, projects, quotas, 
etc.  

 Here is one example. License of product A will be expired in 1 
month. Is it necessary to extend it? Looking at this product usage 
stats in the Octoshell system, we can see that product A was being 
used by hundreds of users, and that means it is in demand. More 
detailed analysis of user activity shows that 50% of users run this 
product on more than 1000 cores, which means we need to 
include a lot of tokens to this license. Moreover, studying run 
times of this product in Octoshell, we can see there are some runs 
finished within several seconds, which usually indicates an error 
has occurred. In this case either correctness of product setup must 

Fig. 1. Distribution of abnormal LoadAVG values 
 
. 
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be checked or more proper product usage manual should be 
provided. 

The practice of supercomputing center maintenance defines a set 
of strict technology and tool requirements for supporting the 
functioning of supercomputer systems. This includes maintaining 
high performance for the supercomputing infrastructure, constant 
monitoring of potential emergencies, continual performance 
monitoring for all critical software infrastructure modules, 
automatic decision-making on eliminating emergency situations 
and increasing the performance of supercomputer operations, 
guaranteed operator notification about the current status of the 
supercomputer and actions taken by the automatic maintenance 
system, and others. Until all these requirements are met, neither 
the efficient operation of a supercomputing center, nor the safety 
of its hardware can be guaranteed. 

The goal of the Octotron project is to design an approach that 
guarantees the reliable autonomous operation of large 
supercomputing centers. The approach is based on a formal model 
of a supercomputing center, describing the proper functioning of 
its components and their interconnections. The supercomputer can 
continually compare its current state with the information from 
the model. If practice (monitoring data of the current 
supercomputer state) deviates from theory (the supercomputer 
model), Octotron can perform one of the predefined or 
dynamically selected actions, such as notifying the operator via 
email and/or SMS, disabling the malfunctioning device, restarting 
a software component, displaying an alert on the systems 
administrator screen, etc. No human is capable of monitoring 
millions of components and processes inside a supercomputer, but 
the supercomputer itself can do this. For example, fig. 2 shows 
number of suspicious events that were caught using our Octotron 
system in Lomonosov supercomputer within 1 month. It reaches 
almost 400 events during one 12h interval, which makes it almost 
impossible for operational manual respond. 

Importantly, this approach guarantees not only reliable operation 
of the existing fleet of systems at a supercomputing center, but 
also ensures maintenance continuity when moving to a new 
generation of machines. Indeed, once an emergency situation 
arises, it is reflected in the model, along with the root causes and 
symptoms of its existence, and an adequate reaction is 
programmed into the model. It may never happen again in the 
future, but if it does, it will immediately be intercepted and 
isolated before it has any effect on the supercomputer operation. 

The main purpose of the Situational screen is to give system 
administrators full and prompt control over the state of the 
supercomputing center. The screen provides detailed information 
on what is happening inside the supercomputer, and provides 

updates on the status of hardware and system software, task flow, 
individual user activity and/or the performance of individual 
supercomputing applications. The situational screen and its 
underlying instruments are designed to meet a number of strict 
requirements: the need to reflect all key performance parameters 
of the supercomputing systems, grant of complete control over 
their status, scalability, expandability, configuration and 
minimization of the impact of the situational screen on the 
supercomputer performance. 

Based on many years of experience in administrating 
supercomputer systems, we can point out the most important 
components which the situational screen must reflect: 

- supercomputer hardware: computing modules, hosts, 
secondary servers, storage, networks, engineering 
infrastructure elements. Here it is important to know both the 
overall characteristics and the status of individual 
components; 

- system software: the status for the entire supercomputer and 
individual nodes, conducting audits with specified criteria for 
any number of nodes; 

- user task flows: tasks queued, tasks being executed, current 
and historical data, statistics on various partitions of the 
supercomputer, statistics on application package usage; 

- activity of a particular user: what is being executed now, what 
is queued, overall performance over a recent time period, etc.; 

- status of any working application: statistics on performance, 
locality, scalability and system-level monitoring data. 

The OctoStat statistics collection system provides highly 
valuable information on the performance of supercomputing 
systems with regards to the flow of tasks queued for execution. 
Task queue length, waiting time before execution, the distribution 
of processors needed for applications of different classes, statistics 
by partitions of the supercomputer, by users or application 
packages, intensity of application flow for execution at different 
times... All of this – and many other metrics – need to be analyzed 
and used to optimize quotas, priorities and strategies for 
distributing valuable supercomputing resources. Moscow State 
University Supercomputing Center uses OctoStat to generate daily 
statistics on the supercomputer usage, enabling prompt decision-
making. 

Fig. 2. Timeline of event count of different types (within 1 month) 
 
. 
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Fig. 3 shows top list of users with worst (wait time/run time) ratio. 
This means these users have to wait in queue really long 
comparing to time their task need to run. There could be several 
different reasons for that (or even all of them) – heavy workload 
of supercomputer, not optimal tasks manager work, or maybe 
their tasks finish really fast. Nevertheless, this situation is worth 
administrator’s attention. 

OctoStat is also intended to analyze how behavior of task flow 
matches the architecture of supercomputing system. On fig. 4 the 

timeline of average Infiniband interconnect usage in different 
partitions of Chebyshev supercomputer is shown. The peak 
throughput is 20 Gbps, but in most cases average throughput does 
not exceed 80 Mbps. This indicates that such fast interconnect is 
usually not in demand – only a few application fully use the 

potential of current Infiniband interconnect. This can be taken into 
account while designing new systems in order to build more cost 
effective supercomputer – with less expensive interconnect but 
instead, for example, with more computing nodes or memory per 
node. 

One key issue when analyzing the efficiency of supercomputing 
centers is the user application runtime performance analysis. 
Performance of a supercomputer on real-life applications today is 
quite low, amounting to just a small percentage of the peak 
performance characteristics. As parallelism increases, this figure 
is bound to decline. There are a multitude of reasons for this 
decline in efficiency, and we use supercomputing system 
hardware and software monitoring data to identify them. A lot of 
data is required for the analysis: CPU load, cache misses, flops, 
number of memory references, LoadAVG, IB usage, I/O usage, 
etc. This data is used to build a runtime profile for each 
application, which is presented as a set of graphs demonstrating 
the changes in monitoring data during the application execution. 
This profile, along with a number of aggregate system 
characteristics (we call it JobDigest of an application) gives a 
good first estimate of the application performance and its features. 
If any issues are observed with the application overall 
performance, additional analysis of the monitoring data is 
performed to identify the causes. Particular attention is paid to 
analyzing application properties such as efficiency, data locality, 
performance, and scalability, which are extremely important for 
the supercomputing systems of the future. 

One good example of JobDigest is provided on fig. 5, with 

timelines of flops, L1 cache misses per second and number of 
memory reads per second. Here we can see that during first part of 
the task there was normal behavior – amount of computations 
(flops) and memory usage (l1 mis and memory reads) is rather 
common, as well as network activity (not shown here). But in 

Fig. 3. Top 5 users with worst wait_time/run_time ratio 
 

Fig. 4. Intensity of Infiniband usage for different partitions (Chebyshev supercomputer) 
 
. 
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second part all activity besides memory reads drop nearly to zero. 
No data sent over network, no cache misses, no flops – generally 
this means that task fell into infinite loop, asking only for loop 
counter. So it is necessary to inform user that created this task 
about abnormal task behavior. It is worth mentioning that in this 
case average system characteristics could not help to find this 
anomaly because of rather long first part. 

All the systems described above are closely linked to one another, 
ensuring high efficiency for large supercomputing centers. Of 
course, they were designed while taking all key aspects of 
maintenance and usage into account for existing supercomputers. 
At the same time, the architecture of these systems was designed 
to be able to adopt large scale, complexity, high degree of 
parallelism and performance of the forthcoming exascale 
supercomputers. 

 

4. CONCLUSIONS 
A set of software systems presented is this article is intended to 
help users as well as administrators of supercomputers to ensure 
efficiency of every level of supercomputing center usage – from 
individual users tasks to the whole cluster. This includes a range 
of different efficiency issues, concerning not only performance 
monitoring and analysis but also visualization and reliability 
problems. This set is being actively developed and used by a team 
from research computing center at the Moscow State University. 
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ABSTRACT
In this paper we address the problem of optimizing applica-
tions for future hardware platforms. By using simulation—
traditionally a tool for hardware architects—applications,
libraries and compilers can be optimized before hardware is
available, allowing new machines to start doing useful sci-
entific work more quickly. However, traditional processor
simulators are not very user-friendly and are, due to their
extreme level of detail, too slow to run applications with
large input sets or allow for interactive use. In contrast,
the Sniper many-core simulator uses higher abstraction level
models, trading off some accuracy for a much higher simu-
lation speed. By adding instrumentation into the simulator
that can annotate performance information at fine granular-
ity, down to individual instructions, it becomes a valuable
tool for software optimization on future architectures.

1. SHIFT-LEFT OF SOFTWARE
DEVELOPMENT

Performance projections of future systems are crucial for
both software developers and processor architects. Devel-
opers of applications, runtime libraries and compilers need
predictions for tuning their software before the actual sys-
tems are available, and architects need them for architecture
exploration and design optimization. Simulation is one of
the most commonly used methods for performance predic-
tion, and developing detailed simulators constitutes a major
part of processor design. Traditionally, simulators were only
used in the exploration and design phases of product devel-
opment. This means software development and optimization
have to wait until (prototype) hardware becomes available,
see Figure 1(a). This puts the software development effort
on the critical path towards bringing products to market
(from the point of view of the vendor), or delays the point
at which new machines can start running optimized science
codes (for the HPC user).

Recently, much effort has been put into enabling software
developers to start work early; at least before final hardware
is available, and ideally to make application optimization
part of the hardware exploration process—enabling a true
co-design of hardware and software where both can be op-
timized in combination (Figure 1, b). The lack of available
hardware requires early software development and optimiza-
tion to be done using some form of performance simulation.
Creating detailed, usually cycle-accurate simulators is part
of the hardware development and validation effort. How-
ever, most detailed simulators, while very accurate, are too

(a) Traditional flow

Exploration Design
Manufacture

& Test
Software $$

(b) Enabling early software development

Software

Exploration Design
Manufacture

& Test
$$

Figure 1: Shift-left of software development enables
quicker time-to-market.

slow to simulate meaningful parts of applications—especially
in the context of many-core systems with large caches. In-
stead, these simulators typically run short traces of code
and require great care and often manual effort to both se-
lect these traces and provide adequate warmup of structures
with long-living state such as caches and branch predictors.

2. HIGH-LEVEL SIMULATION
By trading off some accuracy for the ability to run larger

parts of the application, higher abstraction level simulation
can play a valuable role in both software tuning and archi-
tecture exploration. Simulation speed can be increased by
not modeling some hardware components that are known
to be a bottleneck (e.g., instruction caches in many HPC
codes), or by moving away from structural models that try
to model exactly what each hardware component is doing
and instead using analytical models such as interval simu-
lation [4] or instruction-window centric models [2] for the
processor core, or queuing theory for on-chip networks.

Sniper [1] is an x86 many-core simulator that combines
many of these techniques, in addition to being built on a
parallel simulation framework which can make use of modern
multi-core hardware. These properties result in an acceptable
accuracy (around 20% average absolute error compared to
Nehalem hardware) but much improved simulation speed
(around 1 MIPS, which is around 1000× faster than typi-
cal industrial detailed simulators). This brings interactive
(overnight) runs of representative parts of an application
within reach, greatly speeding up the optimization cycle.

3. ACCURATE PERFORMANCE METRICS
On real hardware, many performance counters are avail-

able that can give valuable insight into how codes are behav-
ing. Cache miss rates are especially valuable, as these often
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Figure 2: Overlapped execution of cache misses and
independent instructions on out-of-order processors.

indicate long pauses in the execution of instructions by the
processor leading to low performance (typically expressed
in instructions per clock cycle, IPC). In the simulator, the
behavior of structures such as caches is modeled in detail so
extracting statistics such as hit rates is trivial.

However, the use of miss rates as indicators for applica-
tion performance can be misleading, as indicated in Figure 2
which plots the execution timeline of a typical section of
code when running on modern hardware. Load operations
that miss in the processor caches usually take many tens
or even hundreds of clock cycles, whereas loads that hit in
cache or compute instructions take only a handful of cycles.
One could therefore assume that the length of time taken to
execute a section of code is proportional to the number of
instructions, increased by the number of cache misses mul-
tiplied by the typical latency of a cache miss. But this does
not take into account the fact that out-of-order processors
can continue executing independent instructions, including
potentially other long-latency loads, while waiting for the
original cache miss to be serviced.

To alleviate this problem, hardware architects often em-
ploy the concept of the CPI stack [3]. This is a stacked
bar graph which breaks up an application’s execution time
into a number of components, and is normalized to cycles
per instruction (for a CPI stack) or to the total number of
clock cycles (for a cycle stack). Each component in the stack
denotes the penalty caused by a different hardware compo-
nent, taking into account the fact that many miss events may
overlap. In the case of the execution shown in Figure 2, all
time spent executing compute instructions is accounted for
in the base component (denoting the execution time assum-
ing the processor would be capable of reaching its maximum
performance all the time) while only the stall time, when
no instructions other than the cache misses are in progress,
is accounted for in the memory penalty component. This
way, each clock cycle of execution is assigned to that hard-
ware component that was on the critical path of execution.
Solving a given stall that is visible on the cycle stack will
therefore be guaranteed to lead to increased performance. In
contrast, ignoring the fact that much of the cache miss la-
tency is overlapped would overestimate its effect, potentially
leading programmers to spend time to reduce cache misses
or other miss events that are not performance critical.

While it is only very recently becoming possible to mea-
sure CPI stack components using hardware performance coun-
ters [6], they are natively supported in the Sniper simula-
tor [5]. Figure 3 plots an example CPI stack obtained from
running an FFT workload on a simulated dual-socket, eight-
core Nehalem machine (with one software thread pinned to
each core), and illustrates some interesting performance ef-
fects. Comparing the behavior of threads 0—3 with that of
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Figure 3: Normalized cycle stacks for each core ex-
ecuting the fft benchmark when running the small
input set on eight cores.

threads 4—7, one can see that the first four threads spend
around 20% of their time in the sync-barrier component,
denoting they were stalled in a software barrier. This be-
havior may be surprising as all threads perform the same
amount of work. Looking at the other components, it be-
comes clear that the difference in execution speed can be
explained by non-uniform memory access (NUMA) behav-
ior as all cores operate on data that is available in the first
socket’s level-3 cache to which the first four cores have faster
access: cores 0—3 have some amount of mem-l3 and only lit-
tle mem-off socket time denoting mostly local L3 accesses,
while cores 4—7 have a significant mem-off socket penalty.

4. FINE-GRAINED STATISTICS
To increase insight into the behavior of different parts of

the code, we extended an internal version of Sniper to collect
hardware events and timing effects at a per-instruction gran-
ularity. As in the whole-program case, comparable statis-
tics can in some cases be obtained on existing systems us-
ing hardware performance counters, but these suffer from a
number of drawbacks: many hardware counters have inac-
curacies such as double-counting under certain conditions,
skidding (meaning that events are not always associated
with the correct instruction), sampling errors (instruction
pointers are typically only sampled when a counter over-
flows), or a lack of insight into how hardware events con-
tribute to execution time. In contrast, our instruction-level
statistics are based on the concept of cycle stacks and can
assign an execution time cost to each individual instruction.
Event counts are added as well to aid in understanding what
hardware component causes the time penalty.

Figure 4 provides an example for a snippet of AVX-512
code. The third instruction (vaddpd) goes out to DRAM
(it performs 6.93 DRAM accesses per 1,000 executions) and
hence has a high performance impact (it is responsible for
7.24% of total execution time). For HPC workloads it is of-
ten important to distinguish instructions that contribute to
useful work (floating point operations) from those that man-
age data and control flow (loads and stores, address and
loop index calculations, comparisons and branches, etc.).
To this end the ops column plots the number of FP op-
erations executed by each instruction, taking into account
masked elements: the fourth instruction (vfmadd231pd) is a
fused multiply-add which performs two operations on each
of eight vector elements, but on average 21% of the elements
are masked off leading to a useful operation count for this
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eip instruction cycles ops mask dram

--

4050b vpcmpd k2{k1}, zmm5, zmm4, 0x2 1.03%

40510 vmovupd zmm8, zmmword ptr [r11+r10*1] 3.51%

40517 vaddpd zmm7, zmmword ptr [r11+r14*1] 7.24% 8.0 6.93

4051e vfmadd231pd zmm8{k2}, zmm7, zmm6 1.84% 12.6 21%

40524 vmovupd zmmword ptr [r11+r10*1]{k2}, zmm8 1.03%

Figure 4: Per-instruction statistics.

Site #1: Location: main fft.c:251 { trans = malloc(...); }

Hit-where: Loads : 1433601 ( 14.3%)

L1 : 1384287 ( 96.6%)

L2 : 43560 ( 3.0%)

dram : 5754 ( 0.4%)

Total allocated: 2.0MB (2.0MB average)

Site #2: Location: main fft.c:250 { x = malloc(...); }

Hit-where: Loads : 1433601 ( 14.3%)

L1 : 1026277 ( 71.6%)

L2 : 326618 ( 22.8%)

dram : 80706 ( 5.6%)

Total allocated: 2.0MB (2.0MB average)

Figure 5: Per-array statistics for fft.

instruction of 12.6 double-precision operations on average.

5. DATA-CENTRIC STATISTICS
Large data-parallel workloads are often limited by cache

capacity and memory bandwidth. While gaining insight into
which instructions cause cache misses can help in tracking
down those data structures that are responsible for poor
cache use, often it can be more insightful to be able to look
at individual data structures directly. To this end, Sniper
can collect cache statistics on a per data structure basis.
In a simulator, implementing such functionality is relatively
straightforward: application calls to malloc and other mem-
ory allocation library functions are intercepted, and the ad-
dress ranges for each data type (determined by the call stack
leading up to the malloc call) are recorded. Each memory
access made by the core can then be tagged with its alloca-
tion site and cache statistics are accumulated per site.

An example can be seen in Figure 5. Two allocation sites
are detected in the fft benchmark, corresponding to the
trans and x variables in the source code. Whereas trans
has good cache behavior and can be serviced mostly out of
the L1 cache, x experiences many cache misses—and could
be a candidate for moving into high-bandwidth memory, or
algorithmic optimizations such as blocking.
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ABSTRACT
This paper describes an efficient method for 3D compu-
tational fluid dynamics (CFD) simulations on high perfor-
mance computers. The problems related to the robustness
and stability of numerical algorithms for distributed simu-
lations are considered. On the example of common scalar
divergence problem the rotationally-invariant finite differ-
ence scheme based on support operators technique is built
and essential properties of the scheme are depicted. The
results of the numerical simulations of the implemented in
MARPLE3D package algorithm and the results of the scal-
ing of the developed software on cluster are presented.

Keywords
Support operators technique; finite differencing; unstruc-
tured meshes; high performance computing.

1. INTRODUCTION
Nowadays due to the rapid developments in the area of
high performance computing there appeared the possibil-
ity to perform predictive numerical simulations in the area
of CFD in the complex-shaped domains on the meshes of
huge dimensions. These meshes are very finely discretized
thus one can simulate highly multiscale physical processes
which on its turn requires simulations using robust and sta-
ble numerical algorithms. These algorithms should possess
a number of properties such as: conservativity, monotonic-
ity, stability in a wide range of flow parameters, high res-
olution, positivness/nonpositiveness, self-adjointness of dif-
ference operators, etc [3], which lead to the solutions with
guaranteed quality. The support operators method is re-
markable as it allows building approximations to differential
operators using general meshes (block-structured, unstruc-
tured, mortar etc.) while the resulting difference operators
preserve not only basic properties mentioned above, but,
additionally, they provide rotationally-invariant difference
schemes [2]. It’s important to pay special attention to the
rotational invariance while working with systems describing
deformations and dissipations in gas or liquid media, e.g.
Navier-Stokes equations.

2. SUPPORT OPERATORS TECHNIQUE
In the area O with the bounadry ∂O let’s consider a com-
mon scalar-divergence boundary problem with, for example,
Dirichlet boundary condition:{

divXu = f(r)

Xu = K∇u
, u|∂O = u∗(x) (1)

Here u – scalar (temperature, pressure and so on), X – arbi-
trary vector, Xu – flows, induced by the gradient of function
u in the media with the conduction properties, defined by
tensor K. Traditional approach to the approximation of
differential operators consists in the independent approxi-
mation of differential operators using the Gauss Theorem:∫

O

divX dV =

∫
∂O

X dS,

∫
O

gradu dV =

∫
∂O

u dS

Support operators method – is a technique with the consis-
tent approximation of differential operators. The system of
equations (1) is considered along with the following identical
integral equation:∫

O

(X,∇u) dv +

∫
O

u · divX dv =

∫
∂O

u (X, ds) (2)

One operator (div or grad) is approximated directly; the
other one is approximated in the way, that it satisfies the
difference analogue of the integral equation (2).

3. DIFFERENCE SCHEME
To construct a difference scheme it is needed to introduce a
difference mesh in the computational domain and to define
mesh functions which will approximate functions of the con-
tinuous argument. Depending on the physical origin of the
values and on the way of their definition on the mesh some-
times it is more convenient to approximate one or another
differential operator directly. In the example given in this
paper the support operators scheme was built using grad as
a support operator.
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3.1 Difference meshes and operators of sup-
port operators technique

In the computational domain O let’s introduce the difference
mesh of general type, which consists of nodes (ω), formed
by nodes cells-polygons (Ω), bases (ϕ), edges (λ), linked to
edges faces (σ(λ)) – boundaries of the balance node domains
d(ω). Closed around node ω surfaces σ(λ(ω)) form node
domains d(ω) (Fig. 1).

Figure 1: Metrical meshes of the support operators
technique.

To the nodes of the grid ω we assign unknown mesh func-
tion u. In this case in the natural way operator grad is
approximated.

Bases ϕ are formed by the system of the initial (covariant)
basis vectors e(λ), formed by edges. The centers of cells Ω
and edges λ are considered to be the arithmetic averages of
radius vectors of nodes ω by which they are formed. Curve,
which links these centers (of the two adjacent by edge cells
or of the cell with the boundary edge ∂λ), represents by
itself a surface:

σ(λ) =
∑
ϕ(λ)

vϕeϕ(λ),

which is oriented in the same way as the basis vector e(λ).
Here

∑
ϕ(λ) means summing up by all bases ϕ, in the for-

mation of which the edge λ participated, eϕ(λ) – are basis
vectors of the reciprocal (contravariant) bases with respect
to the initial bases, formed by basis vectors e(λ).

Bases ϕ(λ) are by pairs included into the cells Ω(λ) adjoint
to the edge λ. Metrical calibration of the difference mesh
consists in the choice of the volumes of basis (with the nat-
ural normalization condition

∑
ϕ(Ω) vϕ = VΩ).

Calibration defines the structure of the closed adjacent mesh
for the different classes of grids. These are triangle and
quadrangle 2D meshes, tetrahedral, hexahedral, prismatic,
etc. 3D meshes, and also their mortar sewed combinations
with adaptation (introducing new nodes in the cells Ω) with
the preservation of self-adjointness and fixed sign properties
of the corresponding “divergent-gradient” operations of vec-
tor analysis of the continuous boundary problems. All the
following statements are of an overall character; the concrete
choice of local basis volumes is illustrated on the example of
triangle-quadrangle mesh.

Basis volume is given by the following formulas:

vϕ =
1

6
|e(λ1)× e(λ2)|

for the triangular cell Ω, which contains basis ϕ and

vϕ =
1

4
|e(λ1)× e(λ2)|

for the quadrangular cell, considering λ1(ϕ) and λ2(ϕ) are
edges, which form basis ϕ.

3.2 Approximations of the differential opera-
tors

On the edges of the mesh let’s choose the positive direction
(Fig. 2):

Figure 2: Construction of bases.

Divergence of the gradient field DIV : (ϕ) → (ω) is defined
by the approximation of the Gauss Theorem on d(ω):

DIVX =
∑
λ(ω)

sλ(ω)τX(λ)

τX(λ) =
∑
ϕ(λ)

vϕ (eϕ(λ), Xϕ)

Where
∑
λ(ω) means summing up by all edges λ, that have

common node ω.

Mesh vector field X is defined by its representations in the
bases Xϕ. Let us denote by ()∇ approximation of the corre-
spondent differential operators; in this case, taking (1) into
account, we have:(∫

(X ∇u) dv

)
∇

=

= −
(∫

O

u DIVX dv −
∫
∂O

u (X, ds)

)
∇

=

= −
∑
ω

(uω,DIVX) =
∑
ϕ

(Xϕ, GRADu)

Gradient vector field GRAD : (ω) → (ϕ) is given by its
components in the bases:

GRADu =
∑
λ(ϕ)

∆λue
′
ϕ(λ),

∆λu = −
∑
ω(λ)

sλ(ω)uω = u∗ω − uω

Assuming in the bases ϕ under Xϕ vector field Xuϕ =
KϕGRADu, we obtain self-adjoint non- negative operator
−DIVXu : (ω) → (ω) or −DIVKGRAD : (ω) → (ω). Here
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the flow vector field Xu is given by its components in the
bases Xuϕ. It is defined by the gradient properties of the
scalar mesh function u, defined in the nodes ω, and mesh
tensor conduction field K, given by its representations in
the bases Kϕ. This operator will be strictly positive, if at
least in one boundary node of the closed difference mesh
the Dirichlet boundary value problem is defined, i.e. in this
boundary node scalar mesh function goes to zero.

4. SOFTWARE IMPLEMENTATION
The described above algorithm was implemented inside the
implicit heat diffusion solver within the MARPLE3D (Mag-
netically Accelerated Radiative Plasma Explorer) package [1].
MARPLE3D is a team work oriented for the solution and
numerical simulations of CFD multiscale physical problems
in domains with complex shapes at systems performing dis-
tributed computations. The code is implemented in C++
language. Parallel implementation is supported by MPI and
CUDA.

The sizes of the meshes rule out their handling by a serial
code. Thus distributed algorithms are used in all stages of
the problem solution:

• distributed mesh generation
• partitioning and repartitioning of meshes (ParMetis)
• parallel solution of the problem
• parallel analysis of the results (ParaView)

The fact that the mesh is partitioned and distributed should
be taken into account on the algorithmic level. Computa-
tions on the distributed mesh are supported by the original
data structures, so called “fictive blocks”, margins, which
consist of several layers of cells and through which data
exchange is performed. Implicit schemes lead to the dis-
tributed systems of linear equations (some equations involve
the unknown values from the neighboring subdomains). For
the solution of these systems, the package Aztec is used.

5. NUMERICAL RESULTS
The developed solver was tested on the propagation heat
wave problem [4].

Let’s consider a non linear heat diffusion equation in the
following form:

∂T

∂t
=

∂

∂s

(
κ0 · Tα ·

∂T

∂s

)
,

where T – unknown temperature, κ0, α – free coefficients,
s ≡ x | y | z. This equation with the following initial and
boundary conditions:

T (s, 0) =


[
αD

κ0
(s0 − s)

] 1
α

, s 6 s0,

0, s > s0,

T (0, t) =

[
αD

κ0
(Dt+ s0)

] 1
α

, t > 0,

has an analytical solution in the form of propagation with
the constant velocity wave:

T (s, t) =


[
αD

κ0
(Dt+ s0 − s)

] 1
α

, s 6 s0 +Dt,

0, s > s0 +Dt,

where D – unknown temperature, s0 – free parameter.

Simulations were held on 3D, 2D and 1D structured and
unstructured meshes with the typical size of s = 3. Test
parameters: α = 2.0, κ = 0.5, s0 = 0.5, D = 5.0; simulation
time: t from 0 to 0.4 with constant time step τ = 2 · 10−4.

On the graphic represented on the Fig. 3 you can see results
of one of such simulations: a one dimensional temperature
front propagating along the axis s, both analytical and nu-
merical solutions. From the graphic you can see that nu-
merical solution is in a very good agreement with analytical
solution, there is a tiny divergence on the front of the wave,
that is a very peculiar area of the simulation. Despite how
finely discretized mesh is taken in this area inhomogeneity
will always persist cause the reason of this inhomogeneity is
inside the physical task itself. On the front of the wave gra-
dient of temperature goes to infinity and heat conduction
coefficient κ equals to zero. Thus we have a mathemati-
cal indeterminicity: infinity multiplied by zero. Solutions
in such points are close to discontinuous. If solutions are
obtained by non-monotonic although stable schemes, they
“fall apart” in such points and give oscillations. Support op-
erators method allows us to build robust numerical scheme
that overcomes such problems and gives a stable solution
close to analytical one.

6. SOFTWARE SCALING
On the test task described above there was also performed
weak scaling of the developed software. The scaling was
done on the Edison cluster of the NERSC (The North Amer-
ican Electric Reliability Corporation) supercomputer center.
Simulations were performed on the amount of cores from 60
to more than 3000 cores. Mesh consistes of 8 million hex-
ahedral cells. The results of the scaling are given on the
graphic, represented on the Fig. 4. From the graphic you
can see that efficient parallel computing is reached when the
amount of cells per core varies from 30000 to 50000 cells.
This was the case of ideal run of one heat diffusion solver.
In case of multiple solvers run these estimation may shift.

7. CONCLUSIONS
The paper deals with the support operators method of con-
structing difference approximations using 3D unstructured
grids. Differencing via support operator method guaran-
tees preserving of properties of original differential opera-
tors, including rotational invariance. The method allows
building robust numerical procedures suitable for multiscale
simulations requiring very finely discretized computational
domains (billions of grid cells) – and it is just a case that re-
quires the use of high performance computing. The support
operator technique is developed for meshes formed with hex-
ahedral, tetrahedral, prismatic cells and their various com-
binations. The appropriate numerical algorithms are incor-
porated into the scientific CFD code MARPLE3D. The code
versatility enables its applications to diverse CFD problems
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Figure 3: Propagation heat wave front at the moment t = 0.4.

Figure 4: Scaling results of developed solver.

in regions with complex shapes. As it follows from numeri-
cal experiments, MARPLE3D ensures quite good scalability
when performing the calculations using a large number of
processors. The data models and features of parallel im-

plementation are discussed. Examples of physical problems
solved via HPC are presented.
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ABSTRACT
Increased system variability and irregularity of parallelism in
applications put increasing demands on the efficiency of dy-
namic task schedulers. This paper presents a new design for
a work-stealing scheduler supporting both Cilk-style recur-
sively parallel code and parallelism deduced from dataflow
dependences. Initial evaluation on a set of linear algebra ker-
nels demonstrates that our scheduler outperforms PLASMA’s
QUARK scheduler by up to 12% on a 16-thread Intel Xeon
and by up to 50% on a 32-thread AMD Bulldozer.

1. INTRODUCTION
The many-core roadmap for processors dictates that the

number of cores on a processor chip increases at an expo-
nential rate. Moreover, cores tend to operate at different
speeds due to process variability and thermal constraints.
As such, parallel task schedulers in the exascale era must
make dynamic (runtime) scheduling decisions [1].

The task dataflow notation has been studied widely as
a viable approach to facilitate the specification of highly
parallel codes [2, 3, 4]. Task dataflow dependences specify an
ordering of tasks (they leverage a task graph), which by its
nature exposes a higher degree of parallelism than barrier-
based models where threads wait periodically for all running
tasks to complete. Dynamic schedulers are, however, prone
to result in less performance than static schedulers due to
runtime task scheduling overhead.

This work investigates a new design for a task dataflow
dynamic scheduler. The key design goal is to minimize run-
time overhead without affecting the task dataflow program-
ming interface. The scheduler supports programs mixing
recursive divide-and-conquer parallelism and task dataflow
parallelism. This hybrid design simplifies, for instance, the
exploitation of parallelism across multiple kernels called in
succession. The scheduler combines the efficiency of Cilk’s
work stealing scheduler [5] for recursively parallel programs
with the efficiency of the steal-half queue [6] for programs
generating large numbers of simultaneously ready tasks.

We evaluate our design experimentally and compare against
PLASMA’s QUARK [2] scheduler on a set of level-3 BLAS
kernels with irregular parallelism. In comparison to QUARK,
our scheduler reduces end-to-end execution time of several
linear algebra kernels by up to 12% on an Intel Xeon (Sandy
Bridge) and by up to 50% on an AMD Bulldozer.

2. RELATED WORK
Several approaches to task dataflow scheduling have been

experimented with. Several authors have implemented Toma-
sulo’s algorithm in software [7, 8]. QUARK [2] is a work-
stealing scheduler tuned to linear algebra problems. QUARK
attempts to optimize data locality. QUARK records and
enforces dependences using the starting address of a task
argument. As such it is dependent on a fixed argument size.
SMPSs [9] uses a comparable work stealing design with many
design decisions that are similar from a high level point of
view. An SMPSs extension for strided and sparse access pat-
terns incurs a high performance penalty by scanning across
all outstanding tasks when scheduling a task [10].

PARSeC/DAGuE is a distributed task scheduler [3]. It
pre-computes and distributes the task graph in order to ob-
tain low overhead scheduling.

StarPU [4] schedules tasks according to predicted task la-
tency. Task latency is predicted using performance models
selected by the programmer.

Swan [11] is a task dataflow scheduler built as an extension
to Cilk [12]. As such, it fully supports nested parallelism.
Contrary to other approaches, Swan attempts to keep the
task graph small during execution and only expands it when
necessary to discover parallelism. In the initial design, task
graphs were retained centrally with the parent procedure.
In this paper, a distributed storage of the task graph among
the worker threads is proposed.

OpenSTREAM [13] is focused on stream parallelism. As
such, the scheduler is organized the matching of producers
with consumers.

XKaapi [14] employs a number of pattern-specific schedul-
ing heuristics in order to reduce scheduling overhead. Others
have similarly proposed heuristics to reduce the overhead of
specific parallel patterns [15].

3. SWAN
Swan is a task based programming model that extends

the Cilk language with dataflow annotations and dataflow-
driven execution [11, 16]. In this language, the spawn key-
word is inserted before a function call to indicate that the
call may proceed in parallel with the continuation of the
calling procedure. The sync keyword indicates that the exe-
cution of the procedure should be delayed until all spawned
procedures have finished execution.

Figure 1 shows an example Swan program that imple-
ments matrix multiply. The various components of the pro-
gramming model are explained below.

3.1 Objects
Objects are special program variables of type versioned
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1 typedef float (∗block t )[16]; // 16x16 tile
2 typedef versioned<float[16][16]> vers block t ;
3 typedef indep<float[16][16]> in block t ;
4 typedef inoutdep<float[16][16]> inout block t ;
5
6 void mul add(in block t A, in block t B, inout block t C) {
7 block t a = (block t)A; // Recover pointers
8 block t b = (block t)B; // to the raw data
9 block t c = (block t)C; // from the versioned objects

10 // ... serial implementation on a 16x16 tile ...
11 }
12
13 void matmul(vers block t ∗ A, vers block t ∗ B,
14 vers block t ∗ C, unsigned n) {
15 for( unsigned i=0; i < n; ++i ) {
16 for( unsigned j=0; j < n; ++j ) {
17 for( unsigned k=0; k < n; ++k ) {
18 spawn mul add( (in block t)A[i∗n+j],
19 ( in block t )B[j∗n+k],
20 ( inout block t )C[i∗n+k] );
21 }
22 }
23 }
24 sync;
25 }

Figure 1: Square matrix multiplication expressed in a lan-
guage supporting runtime tracking and enforcement of task
dependences.

that express inter-task dependences. Objects may be passed
as arguments to tasks using annotated task arguments that
express the side-effects of the task on that argument. Anno-
tated task arguments can only accept objects as arguments,
not constants or generic variable types.

An object may be renamed, which means that its address
is changed by the runtime system. The runtime system per-
forms renaming to increase parallelism. The runtime system
also makes sure that latent pointers to renamed objects are
properly translated to the appropriate version of the object
before accessing memory.

The runtime systems associates metadata to each object,
e.g. to perform dependence analysis and to recover its most
recent version after renaming. The runtime system stores
this metadata side-by-side with the object in order to speedup
the retrieval of metadata.

We further stipulate that all arguments passed to a task
are unique objects. This is to avoid circular dependences of
a task on itself.

3.2 Memory Usage Annotations
The arguments of spawned procedures may be annotated

with memory usage information, i.e. how the argument is
accessed by the task. The memory usage may be input,
output, input/output, commutative in/out or reduction. An
input argument is read but not written to. An output ar-
gument is written and may be read, but it is always written
before it is read. Consequently, its value upon initiation of
the task is irrelevant. An input/output argument (or in/out
for short) may be read and written and it may be read before
it is written.

A commutative in/out annotation extends the in/out se-
mantics with the notion that consecutively spawned tasks

may be executed in any order, but may not execute concur-
rently. Reordering is subject to the absence of other inter-
task dependences. The runtime system guarantees that com-
mutative tasks do not execute concurrently by associating a
lock with each object to enforce mutual exclusion.

Our model also supports reductions, details of which have
been previously published [17]. We will not discuss the sup-
port for reductions here as they pose no specific constraints
for the purposes of this work.

Hyperqueues extend the programming model with queue
usage annotations such as push and pop [18]. These annota-
tions are not fundamentally different than the annotations
listed above as they allow to use the same dependence track-
ing and scheduling techniques as discussed above.

3.3 Execution Model
The Swan execution model is an extension of the Cilk

execution model. Swan behaves identical to Cilk in the ab-
sence of task arguments with memory usage annotations.
The execution model differs when dataflow dependences be-
tween tasks are specified. These dataflow dependences are
restricted within a procedure body. In other words, a task
can depend only on a sibling, i.e., another task spawned by
the parent of the first task. The dataflow dependences are
furthermore determined by the order of the spawn state-
ments in the procedure body. It is assumed that a sequen-
tial thread of execution steps through the procedure and,
in the process, encounters a sequence of spawn statements.
This sequence, together with the memory usage annotations,
defines dependences between the spawned tasks. A depen-
dence states that a pair of tasks must execute in the order
that they were spawned. These tasks are added one by one
to the task graph, where nodes represent dynamic task in-
stances and edges represent task dependences.

The task graph is a directed acyclic graph (DAG) because
tasks can only depend on tasks that appear before them in
(serial) program order. At any moment, the roots of the
DAG are tasks that are either executing or that are ready
to execute. We call the list of root tasks that are ready to
execute the ready list. It provides direct access to the ready
tasks when one is needed.

Note that a Swan program may have up to one dataflow
task graph per procedure body. Execution of the program
may proceed by executing tasks from multiple task graphs
concurrently. Swan uses random work stealing to balance
execution between task graphs dynamically, depending on
the degree of parallelism in each task graph.

4. SCHEDULING
The Swan scheduler is responsible for deciding what task

is executed next by each worker thread. Like Cilk, the Swan
scheduler is symmetric, i.e., all workers execute the same
scheduling algorithm.

On encountering a spawn statement, the scheduler first
checks that all dependences have been satisfied. If so, the
scheduler proceeds as in the Cilk case, pursuing a work-first
execution. A stack frame is pushed on the worker’s deque
(double-ended queue), which is managed like a call stack.

If dependences are not satisfied, then the task is not started
for execution at this point. Instead, it creates a pending
frame, a new type of frame in the Swan scheduler that rep-
resents an uninitiated task. The pending frame is inserted
into the task graph that corresponds to the stack frame that
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Figure 2: The Swan runtime data structures for two worker
threads.

is currently at the tail of the spawn deque.1 The scheduler
then resumes execution of the stack frame at the tail of the
spawn deque. Figure 2 shows the position of the ready list
and the task graph in the scheduler.

The Swan scheduler applies three operations to task graphs:
issue, release, and get-task. The issue operation registers
that a task is accessing its operands (which are objects
in Swan) and records the memory usage annotation. If
other tasks are registered on the same objects, then the
dependences are deduced and recorded, which amounts to
linking the task in the task graph. If no dependences are
present, then the task is executed immediately, or inserted
in the ready list. The release operation unregisters a task,
i.e., dependent tasks are notified that dependences are re-
leased and, if applicable, the dependent tasks are moved to
the ready list. Finally, the get-task operation retrieves a
runnable task from the ready list.

When a spawn deque becomes empty after completing a
procedure, the scheduler first attempts to execute a ready
task on the worker’s ready list. This choice ensures that
task graphs are kept small, as completing a task is likely to
wakeup other pending tasks.

If the scheduler cannot identify ready tasks on the local
ready list, it attempts a provably-good steal of the parent
task. If the provably-good steal is unsuccesful, then random
work stealing is attempted. Random work stealing is again
designed to pick up ready pending tasks. First, a random
worker is selected called the victim. If the victim has a non-
empty ready list, then half of the tasks on the ready list are
transfered to the stealing worker. This strategy minimizes
work stealing [6]. One of the stolen tasks is moved to the
worker’s spawn deque and executed. If the vicitim’s ready
list is, however, empty then the scheduler tries to steal the
top frame on the victim’s spawn deque as in the Cilk sched-
uler. If all of this fails, another random victim is selected
and the algorithm is repeated.

5. PLASMA INTERFACE
For the purpose of the evaluation in this paper, we tightly

integrated Swan in the PLASMA system such that it can
be used as a replacement of the QUARK dataflow sched-
uler [2]. We have implemented a number of dynamically
scheduled level-3 BLAS kernels with irregular parallelism.

1As DAGs are restrained to a single procedure body,
spawned procedures may be not ready for execution only if
the parent procedure is executed in parallel, which requires
it to be at the tail of the deque.

Figure 3: PLASMA matrix parts

Our implementation respects the PLASMA API. This inte-
gration enables a one-to-one comparison between Swan and
QUARK as it is not affected by various implementation de-
cisions such as data layout, library interfaces, etc.

PLASMA parallelizes level-3 BLAS kernels by decompos-
ing them as blocked matrix operations. Hereto, matrices are
decomposed in blocks, assuming an internally tuned block
size. QUARK uses the starting addresses of matrix blocks
to track dependences: a matrix block is shared between two
tasks only if they both take the starting address of that block
as an argument. Some tasks only access part of a matrix
block and QUARK takes this into account. The commonly
occurring parts are the lower triangular part, the diagonal
and the upper triangular part of a matrix block (Figure 3).
While typically only matrix blocks on the diagonal of the
matrix are split in parts, it is necessary to allow per-part
dependences for all matrix blocks as PLASMA supports the
creation of sub-matrices which describe an arbitrary subset
of the matrix. As such, the diagonal blocks on a sub-matrix
may be non-diagonal blocks in the main matrix.

To integrate with PLASMA, we define the equivalent of
a PLASMA descriptor (which describes the matrix layout)
and PLASMA-specific dependence types that record depen-
dences on matrix blocks (Figure 4). The Swan descriptor of
a PLASMA matrix consists of the PLASMA descriptor and
a 2D-array of dependence tokens. The dependence tokens
consists of metadata to record actions of spawned tasks but
contrary to normal variables, they do not contain data. In-
stead, the data is taken from the matrix. The tokens record
up to three dependences to account for individual usage of
the lower and upper triangular parts and the diagonal of
a matrix block. The class subobj_metadata records such
metadata and applies up to 3 times the standard Swan de-
pendence tracking algorithm, depending on what parts of a
matrix block are used by a task.

Input, output and input/output dependences can be ob-
tained from the Swan descriptor using the get_indep(),
get_outdep() and get_inoutdep() methods (only indep’s
are shown in Figure 4, other dependence types are defined
similarly). These dependences hold a pointer to the cor-
responding token and the starting address of the matrix
block’s data.

Given the definition of the PLASMA matrix descriptor
and dependence types in Swan, linear algebra kernels can be
expressed in Swan and scheduled using task dataflow paral-
lelism. Figure 5 shows how the dormqr function is declared
and how it is used. dormqr accesses the lower-triangular part
of a block A (indicated by the additional template argument
sub::lo) and accesses blocks T and C in full. After instanti-
ating the matrix descriptors in PLASMA and Swan formats,
the appropriate matrix blocks, annotated with usage infor-
mation, are obtained using the get_X dep() methods.
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1 struct sub {
2 enum parts id t {
3 lo = 1, diag = 2, up = 4,
4 lodiag = lo | diag ,
5 updiag = diag | up,
6 all = lo | diag | up };
7 };
8 template<typename T, sub::parts id t parts=sub:: all>
9 class plasma indep {

10 static const sub :: parts id t parts = parts ;
11 subobj metadata<sub> ∗ meta; // dependence tracking
12 T ∗ addr;
13
14 static plasma indep<T, Part>
15 create ( subobj metadata<sub> ∗ meta, T ∗ addr ) { ... }
16
17 public :
18 const T ∗ get addr() const { return addr; }
19 };
20
21 template<typename T>
22 class swan desc {
23 PLASMA desc desc;
24 subobj metadata<sub> ∗ tokens;
25
26 public :
27 swan desc( const PLASMA desc & desc ) {
28 // Copy PLASMA desc and setup 2D array of tokens
29 }
30 T ∗ get addr( int m, int n ) const {
31 return plasma getaddr( desc, m, n );
32 }
33 template<sub::parts id t part = sub:: parts id t :: all>
34 plasma indep<T,part> get indep( int m, int n ) const {
35 return plasma indep<T,part>::create(
36 get token( m, n ), get addr( m, n ) );
37 }
38 private :
39 subobj metadata<sub> ∗ get token( int m, int n ) {
40 return tokens [...];
41 }
42 };

Figure 4: Swan interface to PLASMA descriptor

1 void
2 dormqr( ..., // dimensions, transforms
3 plasma indep<double,sub::lo> A,
4 plasma indep<double> T,
5 plasma inoutdep<double> C );
6
7 PLASMA desc A = ...;
8 PLASMA desc T = ...;
9 swan desc<double> As( A );

10 swan desc<double> Ts( T );
11 spawn dormqr( ...,
12 As.get indep<sub::lo>(k, k),
13 Ts.get indep(k, k), // defaults to sub :: all
14 As.get inoutdep(k, n), ... );

Figure 5: Usage of Swan/PLASMA descriptor

6. EVALUATION
We compare the performance of Swan and QUARK to

schedule three linear algebra kernels with irregular paral-
lelism: Cholesky factorization, QR factorization and LU
factorization with partial pivoting. Our comparison is per-
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Figure 6: Overhead of tripple dependence tracking.

formed on two machines: a dual-socket 2 GHz Intel Xeon
Sandy Bridge E5-2650 (2x8 threads) and a dual-socket 2.1GHz
AMD Opteron 6272 (2x16 threads). In the AMD processor,
every pair of cores shares a floating-point unit.

We use PLASMA 2.6.0, gcc 4.9.2 and CentOS 6.5 on both
machines. On Intel we use Intel MKL 11.1.2 for the ba-
sic single-threaded BLAS kernels. On AMD we use ACML
5.3.1.

6.1 Dependence Tracking on Object Parts
Firstly, we validate the design of tracking dependences

on object parts (one dependence chain per part of a matrix
block). This analyses is performed exclusively using Swan on
the Intel machine. Figure 6 compares three scenarios. The
first scenario (“std deps”) measures the performance of QR
factorization while assuming that tasks access full matrix
blocks. Only one dependence is recorded per matrix block.
In the second scenario (“std deps, 3x”), we make the same
assumption but we record 3 dependences per block, one for
each part. The parallelism in the first two versions is iden-
tical. In the third version (“partial deps”), again three de-
pendences are recorded per usage of a full matrix block, but
the QR algorithm correctly records dependences on parts of
matrix blocks. As such, the parallelism is higher in the third
scenario, although dependences are recorded three times in
the majority of cases. We furthermore vary the matrix di-
mension (the block size is kept constant to PLASMA’s de-
fault of 128).

Figure 6 demonstrates that tracking dependences three
times per task argument incurs little overhead. In fact, it
results in a minor speedup. However the standard deviation,
depicted using error bars, shows that this speedup is not
statistically significant. Annotating partial usage of matrix
blocks results in reduced execution time. We note this im-
provement for matrices with dimensions 500 to 2000, which
in practice means that the degree of parallelism must be low
in comparison to the block size and number of threads.

We conclude that our implementation enables increased
parallelism without significant performance overhead in cases
where only full matrix blocks are accessed.

6.2 Evaluation on Sandy Bridge
Figure 7 shows the performance of cholesky, QR and LU

with partial pivoting when executing on 16 threads. Cholesky
decomposition performs nearly equally with Swan and QUARK.
Performance of QR, however, is between 3.8% and 12.5%
faster with Swan than with QUARK for matrix dimensions
up to 4000. LU is between 5.8% and 11.9% faster with Swan
for matrix dimensions up to 4500.

Figure 8 shows that the performance differences grow with
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Figure 7: Performance comparison of Swan and QUARK for varying matrix dimension on Sandy Bridge using 16 threads.
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Figure 8: Performance comparison of Swan and QUARK for varying thread count and a 1500x1500 matrix on Sandy Bridge.

an increasing thread count for a 1500x1500 matrix. At the
highest thread count, Swan executes Cholesky, QR and LU
faster by 3.8%, 12.5% and 11.9%, respectively.

6.3 Evaluation on Bulldozer
Figure 9 shows the performance of the kernels when using

the full Bulldozer machine (32 threads). We do not find
noteworthy performance differences in this comparison for
Cholesky. On LU, Swan outperforms QUARK by 5.6%–
10.6% for matrix dimensions between 3000 and 5000. On
QR, Swan is significantly faster, over 12% and up to 22.8%
for matrix dimensions larger than 2500.

Investigating the variation with thread count (Figure 10),
we see a marked difference between Swan and QUARK on
the three kernels. Note that we applied thread pinning for
both runtimes such that no floating-point units are shared
between threads when 16 threads or less are used. Swan
is able to quickly utilize most of the available performance,
while performance increases more slowly after 16 threads. In
contrast, QUARK needs to utilize all threads to reach close
to peak performance. On 16 threads, Swan outperforms
QUARK by 44–53%.

7. CONCLUSION
Swan is a versatile scheduler that has been proven in

distinct scenarios, including pipeline parallelism, recursive
parallelism and in this paper for linear algebra computa-
tions. The scheduler is optimized to schedule both recur-
sive (divide-and-conquer) parallelism and task dataflow par-
allelism. In a one-to-one comparison with PLASMA, we
demonstrate performance benefits up to 10% on a range of
matrix dimensions on an Intel Sandy Bridge machine. More-
over, we demonstrate up to 22.8% performance improvement
on a fully utilized AMD Bulldozer machine.
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ABSTRACT
High-fidelity simulation of a full scale nuclear reactor core
is a computational challenge that has yet to be met but
is predicted to be achievable on exascale-class supercom-
puters through established hardware-specific programming
models (such as OpenMP and CUDA). Recently-developed,
hardware-agnostic programming models offer opportunities
to express multi-threaded parallelism in a portable fashion
and allow a single, more-unified code base to run on many di-
vergent high-performance computing architectures. Though
the benefits of portability are clear, questions remain as to
what practical performance tradeoffs apply to real world ap-
plications. In the present study, we port two existing proxy
applications that represent key algorithms in nuclear reac-
tor simulations to the hardware-agnostic language of OCCA.
Performance and efficiency of the OCCA ports are compared
to the native OpenMP versions on CPU and CUDA ver-
sions on GPU architectures. This study attempts to quan-
tify tradeoffs between performance and portability of real
world applications, specifically on exascale-class simulations
for nuclear industry, using newer programming models.

Keywords
nuclear reactor simulation, OCCA, OpenMP, CUDA, GPU

1. INTRODUCTION
In the foreseeable future, increased on-node parallelism will
continue to be essential for improving peak FLOP through-
put while constraining power usage [1, 10]. This trend is
evinced by upcoming HPC systems that rely heavily on
many-core accelerators and, in several cases, feature consid-
erably fewer compute nodes than their predecessors. In nu-
clear reactor simulations, several methods of computational
neutron transport are well-positioned to exploit these archi-
tectural trends. For Monte Carlo methods and the method
of characteristics (MOC), communication costs have been
greatly minimized to allow excellent strong scaling across
nodes [5, 11]. Current research is increasingly targeting on-
node optimizations for many-core CPUs with wide vector

units and accelerators such as NVIDIA GPUs and Intel Xeon
Phi Coprocessors [2, 8, 9, 13, 16]. With increased on-node
performance, longstanding objectives in nuclear reactor sim-
ulation, such as high-fidelity simulations of full-scale 3D re-
actor models, are within reach [3, 6].

In response to the variety of many-core architectures, a va-
riety of programming models have also been introduced, in-
cluding CUDA, OpenACC, recent OpenMP 4.0 extensions,
and research projects such as OCCA [7]. Though these mod-
els are solutions to the same problem (programming diverse
architectures with a common set of abstractions), they may
require different modifications to existing algorithms and ap-
plications. Thus for future application development, it is
essential to know what modifications are needed to a ac-
commodate a given programming mode and whether those
modifications are performance portable. In this study, we
examine portability and performance trade-offs for many-
core implementations of XSBench and SimpleMOC, which
are proxy applications for MC and MOC neutron transport,
respectively [4, 14]. We evaluate ports with OpenMP on
CPUs and CUDA and OpenACC on GPU. We evaluate
hardware-agnostic OCCA ports on both kinds of devices.

2. BACKGROUND
2.1 Computing Environments
We report results for two generations of Intel Xeon CPUs: a
dual-socket Sandy Bridge E5-2650 node (2.00 GHz, 8 cores
per socket), and a dual-socket Haswell E5-2699 node (2.30
GHz, 18 cores per socket). Multithreaded results were run
with the maximum available hyperthreads (32 threads for
the Sandy Bridge node, 72 thread for the Haswell). OpenMP
and OCCA ports of our applications were run on the CPUs.
We also report results on the NVIDIA Tesla K40m GPU.
CUDA, OpenACC, and OCCA ports were on the GPU.

2.2 OCCA
OCCA is an open-source library used to program current
multi-core/many-core architectures. Different devices (such
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as CPUs, GPUs, Intel’s Xeon Phis, etc.) are abstracted us-
ing the same offload-model. Application development and
programming for the devices is done through a C-based ker-
nel language (OKL). Different devices can targeted by the
same kernel through run-time parsing with the OCCA parser
and compilation with the specified backend (Pthreads, OpenMP,
CUDA, OpenCL, etc.). Herein, we compile OKL kernels
with the OpenMP backend for CPU and the CUDA back-
end for GPU.

2.3 Computational Neutron Transport
2.3.1 Neutron cross sections

The methods described here make use of neutron cross-
sections, which quantify the interactions of free neutrons
with matter. Microscopic cross-sections (“micro XS”) de-
scribe the interaction of an incident neutron with a single
target nuclide (such as U-235, U-238, etc.). Micro XS values
depend on the energy of the incident neutron, the identity of
the target nuclide, and the interaction of interest (such as ab-
sorbtion, elastic scattering, fission, etc.). Macroscopic cross-
sections (“macro XS”) describe the interactions of a neutron
as it travels through a homogeneous medium composed of
many nuclides. For a given material, interaction, and neu-
tron energy, a macro XS can be expressed as the denisty
weighted average of the component micro cross-sections for
all nuclides in the material.

In neutron transport simulations, cross-section data may
be represented in a number of ways, including continuous-
energy cross-sections or energy groups. Continuous-energy
micro cross-sections are pointwise defined on a non-uniform
energy grid for each isotope and interaction type. Contin-
uous values can be interpolated between gridpoints. With
energy groups, the micro XS values are much more coarsely
discretized. When using continuous-energy cross-sections,
the macro XS is typically computed at runtime, in order to
keep memory requirements manageable. When using energy
groups, macro XS values can be precomputed.

2.3.2 Neutron transport methods
Herein, we describe simulations using two different neutron
transport methods, both of which have easily exploitable
parallelism and are very promising for exascale. In Monte
Carlo methods, many independent neutrons are simulated
in order to obtain estimators for physical quantities of in-
terest (such as neutron flux). In the method of character-
istics (MOC), the spatial domain is decomposed into many
independent 2D tracks, and neutron fluxes are determinis-
tically attenuated across those tracks. Monte Carlo trans-
port uses continuous-energy cross-sections, whereas MOC
uses energy groups; hence, Monte Carlo methods can be
more accurate. Furthermore, Monte Carlo methods are al-
most capable of simulating high-fidelity, full-scale 3D reactor
models, whereas 3D MOC is still in early development. How-
ever, Monte Carlo simulations are generally memory bound,
whereas MOC simulations have high computational inten-
sity and are much easier to vectorize. In fact, 3D MOC
is being specifically developed to leverage modern SIMD
(single-instruction, multiple-data) architectures. To study
these methods, we make use of two proxy applications, XS-
Bench and SimpleMOC, which faithfully model the on-node
computational workload of MC and MOC, respectively.

3. MONTE CARLO METHODS
3.1 Algorithm and Performance Issues
In Monte Carlo transport, each neutron is independently
simulated until it is absorbed by a material or leaks from
the boundaries of the domain (Algorithm 1, lines 2 - 9). To
simulate a neutron’s interactions, the macro XS must be
calculated (lines 3 - 7) for each interaction type (lines 4 -
7) by looking up the material- and energy-dependent micro
XS gridpoints (line 5), interpolating a continuous micro XS
value (line 6), and adding the density-weighted micro XS to
the macro XS (line 7). The macro XS is used to sample
the distance to the next interaction and the result of the
interaction (line 8); and finally, this information is used to
update the neutron’s position and energy (line 9). The proxy
application, XSBench, executes the macro XS lookup kernel
(lines 3 - 7) for a distribution of lookups.

A neutron’s trajectory through phase space is mostly unpre-
dictable, so lookups of the energy- and material-dependent
micro XS are effectively stochastic and exhibit poor locality
of reference. On CPU, XSBench suffers from a high last-
level cache miss rate (up to 65%). When coupled with high
latency to main memory, this results in a huge proportion
(over 90%) of CPU cycles that are stalled on memory re-
sources [15]. Multithreading with OpenMP can partially
mask this latency, but at high thread counts, the available
bandwidth becomes saturated and limits additional perfor-
mance gains. On GPUs, high-bandwidth on-device memory
offers the possibility to push performance bounds, provided
that memory utilization is also high [13].

Algorithm 1 Monte Carlo Method

1: for all neutrons do
2: repeat
3: for all nuclides in material do
4: for all interaction types do
5: lookup bounding micro xs gridpoints
6: interpolate micro xs
7: accumulate micro xs into macro xs
8: sample interaction
9: update neutron position and energy

10: until neutron is absorbed or leaks

3.2 Parallel Implementations
In parallel implementations, many independent neutrons are
tracked simultaneously. In XSBench, this computational
workload is abstracted by performing many simultaneous
macro XS lookups. Finer-grained, nested parallelism may
be implemented by parallelizing the inner loop over nu-
clides (line 3 in Algorithm 1). However, it has been demon-
strated that coarser-grained parallelism over only the outer-
most loop is a more effective use of available cores on CPU
[12]. The most efficient OpenMP and OpenACC implemen-
tations both follow this scheme (Algorithm 2).

Likewise, in the GPU implementation of XSBench, each
CUDA thread performs an independent macro XS lookup
(Algorithm 3). Because threads within the same warp will
request lookups for different materials with different num-
bers of nuclides, the flow-of-control will diverge within warp.
Divergent thread execution limits the number of concurrent
threads that are able execute in SIMT (single-instruction
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Algorithm 2 Monte Carlo Method with OpenMP and OpenACC

1 #pragma omp p a r a l l e l private ( . . . ) , shared ( . . . )
2 #pragma acc data copyin ( . . . ) , copy ( . . . )
3 {
4 . . .
5 #pragma omp for schedu le ( dynamic )
6 #pragma acc k e rn e l s loop gang , vec to r
7 for ( i = 0 ; i < n lookups ; i++) {
8 . . .
9 #pragma acc loop seq

10 for ( nuc=0; nuc < n nucs ( mate r i a l ) ; nuc++) {
11 // Get ( hi , l o ) , the bounding micro xs g r i d po i n t s
12 f = ( hi−>energy − p−>energy ) / ( hi−>energy − lo−>energy ) ;
13 macro xs [ 0 ] += conc ∗ ( hi−>micro xs [ 0 ] − f ∗ ( hi−>micro xs [ 0 ] − lo−>micro xs [ 0 ] ) ;
14 macro xs [ 1 ] += conc ∗ ( hi−>micro xs [ 1 ] − f ∗ ( hi−>micro xs [ 1 ] − lo−>micro xs [ 1 ] ) ;
15 // Get macro xs f o r a l l i n t e r a c t i o n s . . .

multiple-thread), thus limiting core utilization. Divergence
also limits the number of simultaneous pending load re-
quests, thus limiting bandwidth utilization. The effective
bandwidth can be improved by several optimizations, in-
cluding explicit prefetching instructions shown here (lines 6
and 7) as well as optimizations discussed elsewhere [13].

A single OCCA implementation can express optimal paral-
lelism for both the CPU and GPU. OCCA expresses parael-
lism with “outer” and “inner” loops, each of which may be
multidimensional. In XSBench, one-dimensional outer and
inner loops are tightly nested, and independent macro XS
calculations are performed in the innermost loop. When
compiled for the OpenMP backend, the outer loop is par-
allelized, and the worksharing is effectively the same the
same as the native OpenMP version. When compiled for
the CUDA backend, the outer and inner loops are mapped
to threads and blocks, respectively. OCCA syntax also al-
lows for bandwidth optimizations on GPU, including the
use of directLoad() for prefetching (which is ignored by the
OpenMP backend).

Results for all implementations are shown in Figure 3.2.
The OCCA implementations are compiled with the GNU
OpenMP backend on CPU and with the CUDA backend on
GPU. With both backends, the performance of the OCCA
implementation is competitive with the native OpenMP or
CUDA implemenations. Thus, the single OCCA kernel can
optimally express parallelism on both CPU and GPU.

4. METHOD OF CHARACTERISTICS

4.1 Algorithm
MOC implements a ray-tracing scheme, whereby the spa-
tial domain is discretized into tracks and neutron fluxes are
attenuated along those tracks (Algorithm 5). For this im-
plementation of 3D MOC, the geometry is assumed to be
axially extruded and can be represented by a single radial
plane, which is a superposition of all radial detail. Because of
this, tracks along different polar angles (line 2) and axially-
stacked planes (line 4) are independent. Material boundaries
further subdivide the tracks into segments (line 3). The
proxy app, SimpleMOC-kernel, iterates over a distribution
of segments and energy groups, so the kernel consists of two
nested loops.

Algorithm 5 Method of Characteristics

1: for all 2D tracks do
2: for all polar angles do
3: for all material segments do
4: for all axially-stacked stacked planes do
5: for all energy groups do
6: Attenuate Flux

4.2 Parallel Implementations
Unlike Monte Carlo, MOC has a high computational inten-
sity and benefits from nested parallelism on the CPU (Algo-
rithm 6). In the outer loop, each OpenMP thread attenuates
fluxes within different segments (line 1). The inner loop, in
which fluxes are attenuated over different energy groups,
represents about 50 FLOPs with very little divergent exe-
cution. Hence, the fluxes can be attenuated in SIMD over
multiple energy groups. On CPU, the inner loop can be
fissioned into 12 simpler loops to assist the compiler’s vec-
torization process; two of these loops are illustrated here
(lines 3 and 9). The Intel compiler is able to vectorize all
12 loops, whereas the GNU compiler can only vectorize 3
loops.

The GPU implementations can also exploit nested paral-
lelism (Algorithm 7). In CUDA, segments are mapped to
blocks (using a two-dimensional grid, lines 2 and 3) and en-
ergy groups are mapped to threads. Within a warp, fluxes
are attenuated in SIMT over multiple energy groups (lines
4-7). Since thread execution within a warp is minimally
divergent, instruction throughput can remain high.

Currently, we have implemented a single OCCA kernel that
is similar to the CUDA implementation (Algorithm 8). The
kernel is expressed with a two-dimensional outer loop over
segments (lines 1 and 2) and a single inner loop over en-
ergy groups (line 5).1 When compiled for the CUDA back-
end, the outer and inner loops are mapped to blocks and
threads, respectively, as in the native CUDA version. When
compiled for the OpenMP backend, the outer loops are coa-
lesced and mapped to OpenMP threads. However, the single
inner loop is not successfully vectorized by the backend com-
piler (GNU), based on the backend’s vectorization report.

1The OpenACC kernel (not shown) has a similar structure
to the OCCA kernel.
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Algorithm 3 Monte Carlo Method with CUDA

1 g l o b a l void l ookup ke rne l ( . . . ) {
2 g l o b a l i d = blockIdx . x + gridDim . x + threadIdx . x ;
3 i f ( g l o b a l i d >= n lookups ) return ;
4 for ( nuc=0; nuc < n nucs ( mate r i a l ) ; nuc++) {
5 // Get ( hi , l o ) , the bounding micro xs g r i d po i n t s
6 l d g ( lo−>energy ) ; l d g ( lo−>micro xs [ 0 ] ; l d g ( lo−>micro xs [ 1 ] ) ; . . .
7 l d g ( hi−>energy ) ; l d g ( hi−>micro xs [ 0 ] ; l d g ( hi−>micro xs [ 1 ] ) ; . . .
8 f = ( hi−>energy − p−>energy ) / ( hi−>energy − lo−>energy )
9 macro xs [ 0 ] += conc ∗ ( hi−>micro xs [ 0 ] − f ∗ ( hi−>micro xs [ 0 ] − lo−>micro xs [ 0 ] ) ;

10 macro xs [ 1 ] += conc ∗ ( hi−>micro xs [ 1 ] − f ∗ ( hi−>micro xs [ 1 ] − lo−>micro xs [ 1 ] ) ;
11 // Get macro xs f o r a l l i n t e r a c t i o n s . . .

Algorithm 4 Monte Carlo Method with OCCA

1 occaKernel void l ookup ke rne l ( . . . ) {
2 for ( ou t e r i d = 0 ; ou t e r i d < outer dim ; ou t e r i d++; outer0 ) {
3 for ( i n n e r i d = 0 ; i n n e r i d < inner dim ; i nn e r i d++; inner0 ) {
4 g l o b a l i d = ou t e r i d ∗ outer dim + inn e r i d ;
5 i f ( g l o b a l i d >= n lookups ) return ;
6 for ( nuc=0; nuc < n nucs ( mate r i a l ) ; nuc++) {
7 // Get ( hi , l o ) , the bounding micro xs g r i d po i n t s
8 di rectLoad ( lo−>energy ) ; d i rectLoad ( lo−>micro xs [ 0 ] ; d i rectLoad ( lo−>micro xs [ 1 ] ) ; . . .
9 d i rectLoad ( hi−>energy ) ; d i rectLoad ( hi−>micro xs [ 0 ] ; d i rectLoad ( hi−>micro xs [ 1 ] ) ; . . .

10 f = ( hi−>energy − p−>energy ) / ( hi−>energy − lo−>energy )
11 macro xs [ 0 ] += conc ∗ ( hi−>micro xs [ 0 ] − f ∗ ( hi−>micro xs [ 0 ] − lo−>micro xs [ 0 ] ) ;
12 macro xs [ 1 ] += conc ∗ ( hi−>micro xs [ 1 ] − f ∗ ( hi−>micro xs [ 1 ] − lo−>micro xs [ 1 ] ) ;
13 // Get macro xs f o r a l l i n t e r a c t i o n s . . .

Figure 1: Performance of XSBench on target architectures and programming models.
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Figure [?] demonstrates the performance portability of the
OCCA kernel, compared to the other implementations. On
Tesla K40m, the OCCA kernel is competitive with both na-
tive CUDA and OpenACC implementations. However, on
the Sandy Bridge and Haswell Xeon CPUs, the OCCA ker-
nel (compiled with GNU) is slower than the native OpenMP
versions compiled with either GNU or Intel. The lack of vec-
torization in the OCCA version may be partially responsible
for the performance gap, since the performance gap narrows
when the native OpenMP versions are compiled without vec-
torization.

In SimpleMOC-kernel, it is nontrivial to write a single OCCA
kernel that expresses optimal SIMD on CPU and SIMT on
GPU. Expressing loop fission in the OCCA kernel may al-
low successful vectorization on CPU, since it was necessary
in the native OpenMP version, but the implications for GPU
performance are unclear. We are currently developing an-
other OCCA kernel to explore these issues. We believe that
similar problems would arise when writing a unified kernel
GPU/CPU kernel in OpenMP or OpenACC.

5. CONCLUSIONS
In this work, we have presented many-core implementations
of two methods for neutron transport, as represented by
proxy applications. The Monte Carlo application, XSBench,
does not make significant use of SIMD/SIMT operations and
performs best without nested parallelism. In this case, a
hardware-agnostic OCCA kernel can perform optimally on
both CPU (compared to OpenMP) and GPU (compared to
CUDA and OpenACC). The method of characteristics appli-
cation, SimpleMOC-kernel performs best with nested paral-
lelism by utilizing SIMD on CPU and SIMT on GPU. How-
ever, hardware-specific optimizations, such as loop-fission,
were necessary to get peak performance on CPU. These op-
timizations were not trivial to express in a single OCCA
kernel. In this case, the hardware-agnostic OCCA kernel
performed optimally on GPU but sub-optimally on CPU.
This work demonstrates the issues that arise when attempt-
ing to code a unified application kernel for multiple devices.

6. ACKNOWLEDGMENTS
This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of
Energy, under Contract DE-AC02-06CH11357.

7. REFERENCES
[1] N. Attig, P. Gibbon, and T. Lippert. Trends in

supercomputing: The European path to exascale.
Computer Physics Communications,
182(9):2041–2046, 2011.

[2] R. M. Bergmann and J. L. Vujić. Algorithmic choices
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Algorithm 6 Method of Characteristics with OpenMP

1 #pragma omp for
2 for ( int seg = 0 ; seg < n segments ; seg++) {
3 #pragma vec to r // SIMD ops fo r a t t enua t ing f l u x
4 for ( int g=0; g < n energy groups ; g++) {
5 tau [ g ] = sigT [ g ] ∗ ds ;
6 sigT2 [ g ] = sigT [ g ] ∗ sigT [ g ] ;
7 }
8 . . .
9 #pragma vec to r // More SIMD ops fo r a t t enua t ing f l u x

10 for ( int g=0; g < energy groups ; g++) {
11 f l u x i n t e g r a l [ g ] = ( q0 [ g ] ∗ tau [ g ] + ( sigT [ g ] ∗ . . . ) )
12 }
13 . . .

Algorithm 7 Method of Characteristics with CUDA

1 g l o b a l void ke rne l ( . . . ) {
2 int blockId = blockIdx . y ∗ gridDim . x + blockIdx . x ;
3 i f ( b lockId >= n segments ) return ;
4 f loat tau = sigT ∗ ds ;
5 f loat sigT2 = sigT ∗ sigT ;
6 . . .
7 f loat f l u x i n t e g r a l = ( q0 ∗ tau + ( sigT ∗ . . . ) )
8 . . .

Algorithm 8 Method of Characteristics with OCCA

1 for ( int outer Id1 = 0 ; outer Id1 < outerDim1 ; outer Id1++; outer1 ) {
2 for ( int outer Id0 = 0 ; outer Id0 < outerDim0 ; outer Id0++; outer0 ) {
3 int outer Id = outer Id1 ∗ outerDim0 + outer Id0 ;
4 i f ( oute r Id >= n segments ) return ;
5 for ( inner Id0 = 0 ; inner Id0 < n egroups ; inner Id0++; inner0 ) {
6 f loat tau = sigT ∗ ds ;
7 f loat sigT2 = sigT ∗ sigT ;
8 . . .
9 f loat f l u x i n t e g r a l = ( q0 ∗ tau + ( sigT ∗ . . . ) )

10 . . .

Figure 2: Performance of SimpleMOC-kernel on target architectures and programming models.
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ABSTRACT
Hardware architectures that enable Exascale-level perfor-
mance are expected to break some long-held programma-
bility assumptions on the node level and will come with a
plethora of additional challenges that make the productive
development of efficient applications difficult. One critical
issue is data locality, which will become even more important
than it is today. A shift towards data-centric programming
models will be required to exploit the full potential of these
machines. We present an overview of our work in progress
on DASH, a data-structure oriented PGAS library imple-
mented in C++, with which we attempt to address some
of the challenges posed by upcoming hardware architectures
by focusing on flexible data layout and by supporting a hi-
erarchical locality model.

Keywords
Exascale challenges, PGAS, data-oriented programming, mul-
tilevel locality.

1. INTRODUCTION
A number of daunting challenges have been identified on
the way to Exascale computing [2]. Hardware architecture
(particularly on the node-level) must change to achieve the
desired performance and energy efficiency goals and this will
have profound implications for the way in which high per-
formance applications have to be written. Locality of data
access will become an even more important aspect than it
is today, as hardware vendors are forced to abandon node-
wide cache coherence, several types of RAM (3D-Stacked,
DRAM, NVRAM) are included, and complex on-chip net-
works interconnect are employed.

To accommodate these radical changes in hardware, pro-
gramming models must transition from being compute-centric
to being data-centric [16]. We argue that PGAS (parti-
tioned global address space) approaches are particularly well
suited for this transition and describe DASH, our own data-
oriented PGAS approach realized in the form of a C++ tem-
plate library as a step towards this goal.

In this paper we describe our ongoing work within the DASH
project as well as our plans for the future and we show how
PGAS approaches are well suited for the expected hard-
ware characteristics of Exascale class machines – especially
if a data-structure oriented approach is followed instead of
a compute-centric one.

The rest of this paper is organized as follows: In Section 2
we summarize some of the challenges that have been identi-
fied for Exascale computing and describe how they impact
programming of upcoming systems, especially on the node
level. In Section 3 we describe DASH and our plans to ad-
dress some of the identified challenges. Section 4 is dedicated
to related work and in Section 5 we conclude and describe
directions for future work.

2. EXASCALE CHALLENGES
It is expected that the hardware architectures employed in
Exascale systems will differ significantly from current sys-
tems, especially on the node level. Below we summarize a
selection of the most important challenges on the way to
Exascale that have been identified in literature [3, 2] and we
then describe how we plan to address these challenges with
DASH in Sect. 3.

Core Heterogeneity: There will be different types of com-
pute cores on a single chip: latency optimized“fat cores”and
throughput optimized “thin cores”, along with the possibil-
ity of on-chip accelerator cores similar to those found on
current PCIe accelerator cards.

Performance Heterogeneity: Even among homogenous
cores, several factors will lead to inherent performance vari-
ability of the compute characteristics, such as near-threshold
voltage operation, automatic hardware error correction, and
hardware frequency throttling to avoid thermal hotspots.

Complex On-Chip Networks: Cores will be connected
by significantly more complex on-chip networks and locality
to memory and the other cores will thus become a much
stronger concern than in current machines.

Noncoherence: The memory system hierarchy will be sub-
divided into coherence domains. Cache coherence will only
be provided between subsets of cores. Manual management
of data coherence will be required between those coherency
domains. It will thus become necessary to manage vertical
locality more explicitly.

Deep Memory Hierarchies: The memory hierarchy will
become deeper with different bandwidth and latency char-
acteristics on different levels. This will most likely include
a configurable scratchpad memory that must be manually
managed. Thus, for some applications, a radical shift in
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data structure layouts will be required to achieve energy ef-
ficiency and performance.

Stratified Main Memory: A variety of technologies will
be available for main memory. Besides regular DRAM it is
expected that systems will come equipped with high-bandwidth/low
capacity 3D-stacked RAM as well as low-bandwidth/high
capacity non-volatile RAM (NVRAM).

Fault Tolerance and Recovery: Traditional checkpoint-
restart based approaches for fault-tolerance will not work at
extreme scales due to the sheer size of the machines. More
localized approaches will be necessary, where data can be
recovered and computation be resumed on a local level.

Code Modernization: A lot of legacy software exists that
will be ill suited for the hardware landscape of the Exascale
era. Many applications will require substantial rewrites to
enable them to achieve a significant fraction of available per-
formance. Worse, as different vendors develop their specific
design for Exascale, more than one such rewrite might be
necessary.

While existing applications will be able to run on upcom-
ing systems, for example with the help of automatic caching
systems that take advantage of the additional levels of the
memory hierarchy, the full potential of the hardware will
only be unlocked when the changes on the hardware side
are reflected in the programming model. Finding the right
abstractions for these new programming models is a moti-
vation for the DASH project.

3. DASH
DASH [8] is a data-structure oriented C++ template library
that implements a PGAS model by relying on a one-sided
communication substrate which is accessed through an in-
termediate runtime layer called DART (the DASH runtime).
DASH can be used within a shared memory node as well
as between nodes and it provides an iterator-based inter-
face that is similar to the data containers of the C++ Stan-
dard Template Library (STL). In DASH, data elements are
distributed over several units (the individual participants
in a DASH program) and by using techniques such as op-
erator overloading, the DASH distributed data containers
can be used in much the same way that local data struc-
tures are used. DASH is currently being developed as part
of the priority program for software for Exascale systems
(SPPEXA)1, funded by the German research foundation
(DFG). A second phase of funding (covering some of the
planned features outlined in Sect. 3.2) is currently under
review.

The rest of this section discusses some of the features of
DASH and how they can help address some of the challenges
faced when transitioning to Exascale hardware.

3.1 Programming with DASH
Fig. 1 shows a simple example stand-alone DASH program.
DASH follows the SPMD (single program, multiple data)
model of execution and the number of units executing a

1http://www.sppexa.de

1 int main(int argc , char* argv [])
2 {
3 dash::init(&argc , &argv);
4

5 dash::Array <int > a(1000);
6

7 if( dash::myid()==0 ) {
8 // global access and standard algorithms
9 std::sort(a.begin(), a.end());

10 }
11

12 // local access using local iterators
13 std::fill(a.lbegin(), a.lend(), 23+ myid);
14

15 dash:: finalize ();
16 }

Figure 1: An example stand-alone DASH program.

program is specified at program launch time. Sets of units
can be grouped into teams and teams form the basis for all
memory allocation and collective synchronization and com-
munication operations. Teams are arranged in a hierarchy
in DASH. The default team dash::Team::All() comprises all
the units in the program and a new team can only be formed
as a sub-team of an existing team. In line 5, a distributed
dash::Array a is allocated. The array a contains 1000 inte-
gers and is distributed over the memory of all units in the
program. The way in which the distribution occurs can be
controlled by specifying a distribution dash::Pattern. Pre-
defined patterns are BLOCKED, CYCLIC and BLOCKCYCLIC, if a
pattern is not specified explicitly, BLOCKED is the default.

DASH follows a global-view approach, which means that the
data structures in DASH represent global objects and can be
accessed using global indices; i.e., for the same index i the
expression a[i] refers to the same array element, regardless
of which unit evaluates the expression. Global-view pro-
gramming is an important productivity feature, because it
allows distributed data structures to be treated much like
regular local data structures or STL containers. In fact,
DASH arrays can be used with standard STL algorithms, as
shown in line 9 of Fig. 1.

For performance reasons it is however critically important
to also enable efficient local access and indexing. This is
achieved in DASH by the provision of a local proxy object (.
local) and by supporting local iterators .lbegin(), .lend()

that operate only on the local part of an array. An example
for this mode of usage is shown in line 13 of Fig. 1.

Besides local and global access, DASH supports hierarchical
views on data and hierarchical iterators. Hierarchical views
exploit the arrangement of teams in a tree. For example
a.hview<2>() defines the hierarchical view of a two levels
“below” the allocation team.

This situation is shown in Fig. 2 where eight units are ar-
ranged in a two level hierarchy.
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u2u1 u4u3 u6u5 u8u7

t0

t1

t2

t0=dash::Team::All();
t1=t0.split (2);
t2=t1.split (2);

Figure 2: An example team hierarchy. Eight units
(u1, . . . , u8) are arranged in a two-level hierarchy. The func-
tion split(n) splits the parent team into two equal-sized
sub-teams.

1 dash::Team& t0 = dash::Team::All();
2 dash::Team& t1 = t0.split (2);
3 dash::Team& t2 = t1.split (2);
4

5 dash::Array <int > a(1000);
6

7 if(myid ==3) {
8 // access on level of t1
9 auto hv1 = a.hview <1>();

10 for( auto el: hv1 ) { cout <<el; }
11

12 // access on level of t2
13 auto hv2 = a.hview <2>();
14 for( auto el: hv2 ) { cout <<el; }
15

16 // local access
17 auto hv3 = a.hview <-1>();
18 for( auto el: hv3 ) { cout <<el; }
19 }

In this example, hv1 is the hierarchical view of the array a

on the level of t1. For unit 3 this represents the indices a

[0],...,a[499], assuming a blocked distribution. Similarly,
hv2 is the hierarchical view of a on the level of t2. For unit
3 this represents a[250],...,a[374]. The hview<> template
class also offers two specializations. hview<0> represents the
whole global array and hview<-1> represents the local part
of the data only.

3.2 Addressing Exascale Challenges
In this section we describe some of the existing and planned
features for DASH and how they address the Exascale chal-
lenges outlined in Sect. 2.

Global Address Space: Similar to other PGAS approaches,
DASH works both on top of shared memory and distributed
memory hardware. The loss of cache coherence across full
nodes is thus not a fundamental problem – the underlying
runtime system can be adapted to use the most efficient form
of synchronization and communication for each level in the
hierarchy.

Hierarchical Locality: DASH was designed from the ground
up to support hierarchical locality. Groups of units are orga-
nized in teams, which form a hierarchical structure. Teams
build the basis for memory allocation, synchronization, and
communication operations. Using the team concept, DASH
allows for a more fine-grained control over data access pat-
terns with multiple hierarchical locality levels. Instead of
the normal two-level distinction (local/remote) it is possi-
ble in DASH to access data at a certain “distance” by using
hierarchical locality iterators, as shown in Sect. 3.1.

Memory and Execution Spaces: In its present version,
DASH does not provide an explicit execution model and

implicitly fulfills memory allocation requests by using the
node’s main memory (DRAM). Future versions will relax
these two restrictions by developing the notion of explicit
memory and execution spaces.

A memory space is the representation of a unit’s mem-
ory allocation capabilities from a physical memory of a cer-
tain type. In the abstract machine models envisioned for
Exascale architectures [2] this could for example be high
bandwidth 3D stacked memory, NVRAM, conventional D-
RAM, or even an explicitly managed scratchpad memory.
Representing memory spaces as different types within the
C++ template library (e.g., dash::array<int, SCRATCH>

a(1000);) allows the compile-time specialization of the var-
ious allocation options with no runtime overhead.

Similar in spirit to memory spaces, execution spaces repre-
sent a unit’s compute capabilities. Depending on the partic-
ular hardware characteristic, a unit might be able to launch
tasks to a subset of the fat cores, thin cores and/or accelera-
tor cores available on a node and this choice can similarly be
encoded in template parameters to allow for a compile-time
specialization.

Data Redundancy: DASH already realizes a virtualiza-
tion layer for the access to data items stored in the separate
physical memory of several nodes. Provided with a fault-
tolerant foundation for the runtime system, it is conceptu-
ally easy to extend this virtualization concept to support
multiple storage locations for a single data item so as to
support a fault-tolerance mechanism through the redundant
storage of data. I.e., if the node holding the primary copy of
a data element becomes unavailable, it can be reconstructed
from another node that has a copy.

DART, the DASH runtime layer, is currently based on MPI-
3 RMA (remote memory access) operations and MPI is presently
not a suitable basis for a fault-tolerant implementation of
DASH. This situation might however change in the future
and other candidate one-sided communication substrates with
stronger support for fault-discovery and tolerance such as
GASPI [10] are currently evaluated within our project.

Persistent Data: Data must be the primary concern for
programmers in the Exascale era. It is rare that the useful
lifetime of a dataset encompasses just a single application.
Often a workflow of applications is combined to generate and
analyze simulation results. In current practice, applications
are often coupled via writing and reading of intermediate
files - simply because this is the least common denominator
between applications.

To improve upon this situation, we propose a persistent data
dock as a solution to the important problem of application
coupling and data interchange while simultaneously provid-
ing an incremental path to code modernization even for non
C++ applications.

A schematic illustration of the planned DASH data dock is
shown in Fig. 3. While a regular PGAS application reads
and writes its own data structures using PGAS data access
primitives, the DASH data dock generalizes this idea to allow
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Figure 3: A schematic illustration of the DASH data dock.

other applications access to the data using the concept of a
DASH PGAS“server”. While this model conceptually allows
several applications to access the data at the same time, the
more common approach will be to hand off ownership of the
data from one application of the workflow to the next.

Note that in Fig. 3 nodes a,b,c,. . . and x,y,z,. . . can be iden-
tical (or sub-sets) of nodes 0, 1, . . . , N . In the case of an exe-
cution on the same hardware, fast direct access is supported
while remote data access requires some kind of network-
based access. In both cases C++ applications can make
use of the advanced C++ data access methods provided by
DASH, while inter-operability with FORTRAN is realized
by a simplified C-based interface.

4. RELATED WORK
Traditional PGAS approaches typically come in the form of
a library (e.g., OpenSHMEM [15], Global Arrays [13]) or lan-
guage extension (Unified parallel C, UPC [1], Co-Array For-
tran, CAF [12, 14]). Those solutions usually don’t address
hierarchical locality and offer only a two-level (local/remote)
distinction of access costs. Typically these approaches also
only offer one-dimensional arrays as their basic data-type
out of which more complex data structures can be con-
structed – but the work to do that falls on the individual
programmer.

More modern PGAS languages such as Chapel [5] and X10 [6]
address hierarchical locality (e.g., in the form of locales or
hierarchical place trees [17]) but using these approaches re-
quires a complete re-write of the application. Given the
enormous amounts of legacy software, complete rewrites of
large software packages are unlikely to happen.

Data structure libraries place their emphasis of providing
data containers and operations on them. Kokkos [7] is a
C++ template library that realizes multi-dimensional ar-
rays with compile-time polymorphic layout and allows par-
allel operations executed over their data items. Kokkos is an
efficiency-oriented approach trying to achieve performance
portability across various manycore architectures. While
Kokkos is limited to shared memory nodes and does not
address multi-level machine organization, a somewhat simi-
lar approach is followed by Phalanx [9], which also provides

the ability to work across a whole cluster using GASNet as
the communication backend. Both approaches can target
multiple back-ends for the execution of their kernels, such
as OpenMP for the execution on shared memory hardware
and CUDA for execution on GPU hardware.

STAPL [4] is a C++ template library for distributed data
structures supporting a shared view programming model.
STAPL is not a bona-fide PGAS approach (it does neither
offer the abstraction of a global address space nor has it the
concept of global pointers) but provides distributed data
structure and a task-based execution model. STAPL of-
fers flexible data distribution mechanisms that do however
require up to three communication operations involving a
directory to identify the home node of a data item. PGAS
approaches in HPC usually forgo the flexible directory-based
locality lookup in favor of a statically determinable location
of data items in the global address space.

Recently, C++ has been used as a vehicle for realizing a
PGAS approach in the UPC++ [18] and Co-array C++ [11]
projects. While our previous work on the DASH runtime is
based on MPI, UPC++ is based on GASNet. Porting an
existing MPI application will therefore be more straightfor-
ward using DASH. Co-array C++ follows a strict local-view
programming approach and is somewhat more restricted
than DASH and UPC++ in the sense that it has no concept
of teams to express local synchronization and communica-
tion.

5. CONCLUSION AND FUTURE WORK
The first public release of DASH is currently under prepa-
ration. This version will feature a one dimensional array
(dash::array) as the basic data structure and will include
an MPI-3 based runtime system that uses RMA (remote
memory access) operations as a one-sided communication
back-end []. The immediate next steps for the project are
the development of a multi-dimensional matrix datatype and
the exploitation of on-node shared memory facilities in the
runtime system. Longer term plans for the project focus on
the support of more irregular data structures such as lists
and hash tables as well as the provision of a task-based ex-
ecution model.
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ABSTRACT
Dominant execution mode for the most of HPC applications
using MPI or hybrid parallel model rely on static resource
allocation. While this is explicitly mapped to both MPI us-
age scenarios and runtime systems, it entails restrictions for
efficient dynamic execution. This limitation becomes criti-
cal when fault tolerance of MPI applications is concerned.
Also some classes of applications require dynamic process
creation. This paper discusses enabling of dynamic resource
allocation for adaptive execution and fault tolerance in MPI
applications. Existing functionality of the MPI library and
underlying layers and required interactions are described.
Implementation and common usage scenarios are presented.
Practicality is discussed, showing performance and limita-
tions on synthetic experiments.

1. INTRODUCTION
Recent HPC systems build their computational capabilities
and performance on extreme number of processing elements
- either multicore nodes, hyperthreaded cores, accelerated
nodes or other constructs. This requires applications to be
extremely parallel and scalable to run efficiently on those
systems and benefit from their peak performance. On the
other hand, in real usage several applications share one large
system at the same time. It is quite obvious since such sys-
tems are expensive and consume a lot of resources even when
idle. Parallel applications need fair and optimal sharing of
the computational resources which is usually provided by
resource manager or queuing system.

One of the common constraints for programmers in the de-
scribed shared computing environment is static resource al-
location. Although MPI and other parallel programming
models have constructs that allow dynamic process creation
and management, it is not easily manageable in a shared
multi-task system. Newly created processes must use al-
ready allocated resources which leads to either waste of re-
sources that need to be preallocated or processes oversub-
scription which likely results in performance degradation.
Moreover fault tolerance of parallel applications becomes a
real need. Common scenarios for process fault recovery as-
sume a repair stage which implies dynamic creation of new
processes.

In this work a simple model for the complete dynamic multi-
process execution is proposed. The approach uses existing
methods for resource allocation resizing in the Slurm envi-
ronment. It allows dynamic multi-process applications in a

shared environment. The latter gives more opportunities for
better resource utilization and allows programmers to cre-
ate more flexible applications that may allocate resources
dynamically and exclusively which is usually required to
achieve full performance and essential when addressing fault
recovery.

This paper is organized as follows: section 2 is a study of
a current context for most popular MPI implementations
and their integration with scheduling systems. MPICH and
OpenMPI projects are addressed and Slurm system as re-
source manager. Section 3 describes application of the dy-
namic resource re-allocation for failure recovery of the MPI
jobs. An analysis of MPI communicator reconstruction and
process failure recovery is discussed. Performance study for
synthetic scenarios are described in section 4.

The key contributions of the described work include:

• A simple model for MPI user application with batch
scheduler interaction.

• An implementation of the proposed model.

• An analysis of the available MPI communicator repair
mechanisms and its integration with resource alloca-
tion.

• A study of a failure recovery performance for simple
model application.

2. PROCESS AND RESOURCE MANAGE-
MENT INTERACTION

Most HPC systems that support multiple applications ex-
ecution separate resource allocation and actual application
execution. Queueing system or resource manager is usu-
ally responsible for allocation which is preceding step to
application startup. Application processes management is
more system-wide task and possibly many components are
involved. MPI implementations introduce a form of process
encapsulation for better execution control. Nevertheless all
these components interact closely as shown on figure 1.

2.1 MPI level
MPI standard [7] defines functionality for process creation
and management. There are library calls that allow dynamic
process creation. It is MPI runtime responsibility to create
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and start new processes within already initialized applica-
tion instance. It allows a user to build dynamic applications
that can spawn new processes whenever it is required.

While dynamic process creation is initialized within user
MPI application, the actual process management is usu-
ally delegated to lower level system mechanism. It may
depend on a specific MPI library implementation but most
of modern implementations rely on the quasi-standardized
API called Process Management Interface (PMI) [1]. There
are two existing generations of the API (PMI and PMI2).
In the case of MPICH, MPI process spawning model is del-
egated to the PMI infrastructure. For two mainstream MPI
libraries, MPICH [8] is providing PMI layer implementation
tightly integrated within its own process manager called hy-
dra while OpenMPI [9] has a similar approach with closely
related project called PMIx.

What MPI standard does not define is how the application
processes are pinned to the available hardware. It is up
to system levels (either operating system scheduler or dedi-
cated resource manager like queuing system) how these pro-
cesses are handled and what resources would be allocated to
the MPI application. The reason for this is the variety of
the systems and underlying execution models that MPI is
intended to support. This approach is the state-of-the art
of the parallel computing on the most of available HPC sys-
tems. As a consequence, most of the MPI applications are
used in the following scenario: pre-allocate sufficient amount
of resources (cpus, memory, other), start application when
resources are available, wait for completion. This scenario
enforces that resources are fixed throughout application run
time, what is also the most practical approach.

2.2 Slurm integration
One of the commonly used resource managers is Slurm [10].
It allocates required resources that allow user run applica-
tion in a batch job scheme. It has modular design and is
organized with plugins that control job creation and execu-
tion. One of the functionalities of the system is to extend
an existing allocation with additional resources. The op-
posite operation with resources reduction is also available.
Slurm provides API for its functionality which implements
some subset of the PMI interim process management layer.
This allows communication between MPI methods from the
user application and job management layers handled by the
Slurm system. That allows to manage dynamic resource al-
location, in a form of resizable user jobs, available from user
level. Integration that would make it easily accessible and
usable from user application requires control flow from ap-
plication through the MPI and PMI levels to Slurm API.
In our approach we allocate new resources and create new
processes which enable an MPI application to utilize these
resources dynamically within one Slurm job.

The proposed approach is based on an MPI process spawn-
ing model which only allows for a blocking mode of process
creation. While resource allocation is usually not immediate
in a system with many users and their jobs, the non-blocking
mode is more practical. A basic implementation which ex-
tends the MPI standard has been proposed which partly
follows previous ideas on non-blocking process creation con-
sidered on the MPI-Forum [6].

Process ManagerPMI

User job (Slurm) Job extension

User application MPI

MPI Library

Figure 1: Schematic diagram of interaction between
process and resource managing layers.

Additional information is passed from the MPI spawn call
using info object. This set of key-value pairs provide the
runtime system on how to start new processes, as standard
defines. Such information can be also request on extra re-
sources allocation. Appropriate key parameter need to be
then parsed and interpreted by runtime system - PMI li-
brary in this case. This is the place where integration has
been implemented: PMI reaction to the process creation to-
gether with resource allocation request resulting in Slurm
job extension.

2.3 Modes of dynamic resource allocation
Availability of resources that need to be allocated depends
on the load of the system and Slurm site configuration. In
case when application must wait for these resources and their
actual availability time is uncertain different approaches are
possible. Allocation request may block execution until al-
location is granted or given timeout reached. This is the
simplest, blocking mode, implemented with a use of the
slurm_allocate_resources_blocking API function. An-
other mode is immediate in which resources are allocated
only if already available. Otherwise the request is rejected
and error is returned. It is allocated using immediate con-
straint of the Slurm allocation request. The latest mode
considered is non-blocking, but not really immediate, when
execution control is returned but allocation request is pend-
ing and its completion need to be probed with additional
function call or signalled with callback function. This mode
has been implemented using small extension to the standard
MPI functionality.

3. FAULT-TOLERANCE WITH MPI
Various approaches have been explored in the context of
fault tolerance and failure recovery in the MPI model. Spe-
cific MPI implementations [4] and other mechanisms [5] have
been proposed but without successful adoption in a form of
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standard inclusion. Recent proposal of fault tolerance prim-
itives called User Level Failure Mitigation [6] (ULFM) found
wide recognition and is considered for future MPI standard
version inclusion. ULFM extensions are partly implemented
in both OpenMPI and MPICH projects and first analyses
of MPI applications with ULFM based fault tolerance have
been published [2][3].

One of the most common issues regarding failures in the
MPI model is process faults handling. One may expect that
in case of process failure global consistency of all applica-
tions components is preserved or may be recovered and ap-
plication is able to continue. This requires a mechanism to
recover MPI communicators that experienced process fail-
ure. Communicators are abstract construct that stores pro-
cesses groups and respective communication context. ULMF
contains primitives enabling communicator failure detection,
acknowledgement and revoke operations. Recovery employs
shrink operation that excludes all failed processes and cre-
ates new, possibly reduced, communicator. Complete re-
store that would recreate the failed processes requires user
choice and implementation.

3.1 Communicator reconstruction
Reconstruction of communicator, that contains failed pro-
cesses, may be realized at least in two scenarios. First, with
direct application of ULFM shrink operation, which results
in a new, consistent but reduced in size communicator. Sec-
ond, similar to the first but with additional operations which
fully reconstruct pristine communicator. The latter scenario
requires to restart failed processes by applying MPI process
spawning. This is the place where dynamic resource alloca-
tion is very helpful.

3.2 User-Level Failure Mitigation approach
ULMF primitives allow to implement fault handling that is
most appropriate for user application. While failure is al-
ready detected by either acknowledge operation or by revok-
ing the failed communicator, one can reconstruct the com-
municator. The task of restoring spawned processes to the
state before failure need to be assured by the application
and is not a part of the ULMF model.

3.3 Common scenarios
Two scenarios simulating real failure cases have been used.
First analyses a single process failure. Synthetic case when
chosen process dies has been used to explore costs of the
complete communicator reconstruction. This corresponds
to the situation when: either single process fails while other
communicator members continue to run; or situation when
node that executes single multithreaded process dies but
other nodes participating in the communicator remain un-
affected (top of the figure 2). Realization is a simple MPI
application with main loop performing iterations of cyclic,
non-blocking point to point communication between pro-
cesses arranged in a ring in a single communicator. In each
iteration communicator is tested against process failure. If
any process is reporting communication failure then commu-
nicator is revoked and eventually reconstructed. Re-created
process is spawned together with newly allocated resource
(processor). Application is then ready to be fully restored
by either withdrawal to the last successfully completed iter-
ation stored in memory or checkpointed to the local file.

Node 1Failed NodeNode 0

MPI Communicator

MPI Communicator 0 MPI Communicator 2

MPI Process 0 MPI Process 2 MPI Process 3

MPI Process

MPI Process MPI Process MPI ProcessMPI Process

MPI Communicator 1

Figure 2: Common failure scenarios addressed.

An other scenario that has been modelled is a system node
failure. It mimics the application, that uses separated inter-
node communication context and intra-node synchroniza-
tion, encountering node failure (bottom of the figure 2). This
approach is natural for two level parallelism with MPI+MPI
model that is composed of MPI communication across the
nodes and MPI shared memory windows within the node.
It allows to reduce communication costs and eventually op-
timize message exchange on the MPI internal level. MPI
provides convenient functionality that partitions global com-
municator into a disjoint subgroups of given type and shared
memory islands specifically. This exposes intra-node shared
memory regions for local processes.

In this case dedicated intra-node communicator has been
used. While computing node fails, respective communica-
tor disappears and fault-tolerant application need to han-
dle with corrupted communicator. With a choice of ULFM
model, one must decide on detection technique. Two ap-
proaches aiming at distributed detection, not involving all
participating processes, have been studied.

First approach relies on the MPI inter-communicators. This
allows easy detection of the remote node failure locally. While
ULFM implementation provided by MPICH does not sup-
port inter-communicators as of begining of 2015, it was not
tested. Latter approach does not involve inter-communicators.
Instead of global failure testing, which is not scalable as all
processes are involved, more distributed attempt has been
proposed with a special communicators structure.

Synthetic mini-application has been used to study intra-
node communicator reconstruction. It makes two level re-
duction: locally over shared memory node and globally over
nodes using MPI reduction. Every time global reduction
raises fault error, local communicator associated with the
failed node is detected and eventually re-created with a new
node allocated dynamically. At this stage application is
ready to be revoked to the desired point of execution using
checkpoints. The use of checkpoints obviously introduces
significant memory footprint and synchronization overhead.
Other choices are possible in case when memory load is crit-
ical factor for application performance.

Proceedings of the 3rd International Conference on Exascale Applications and Software 55

Enabling Adaptive, Fault-tolerant MPI Applications with Dynamic Resource Allocation Szpindler



Figure 3: Relative cost of the spawn and allocate
operations for increasing number of processes (N-
M: number of parents and children).

Both scenarios have been explored on generic x86 cluster
with multicore nodes running Slurm version 14.03.5 and
MPICH version 3.2a2.

4. PERFORMANCE AND SCALABILITY
It has been already shown that communicator reconstruc-
tion with recreating failed processes introduces significant
overhead [2]. This is associated with MPI_Comm_spawn im-
plementation that have not received broader attention and
serious optimizations since it was introduced.

Considering dynamic allocation one must expect further over-
heads due to user job resizing which involves many, possibly
slow, system components. Overheads in the case of synthetic
scenarios has been measured in immediate allocation mode.

Immediate allocation has been implemented using native
Slurm request feature. The feature causes to immediately
allocate resources if currently available or to raise an er-
ror in the other case. The non-blocking allocation scheme
described in the previous section means immediate return
to execution after the allocation request but not necessar-
ily immediate availability of the resources. Thus blocking
neither non-blocking allocation mode was studied in case of
performance while it depended on external conditions and
availability of the resources.

First experiment measured costs of a simple process spawn-
ing with extending allocation. Newly allocated resources
have used either the same computing node or allocated ad-
ditional node to spawn new process on it. Figure 3 shows
overheads for spawn with allocate with immediate allocation
on the same (local) node.

Second set of experiments explored node failure scenario.
Performance of the intra-node communicator reconstruction
with a use of dynamically allocated nodes has been anal-
ysed. Cost of the node failure detection tends to depend on
the size of the intra-node communicator (number of local
processes) only and does not affect scalability. Further over-
heads are observed for dynamic allocation of nodes, due to
user job resizing which involves many, possibly slow, system
components. Experimental results have been collected using

Figure 4: Time cost in seconds of the spawn with
allocing additional node. Note the logarithmic scale.

”immediate” allocation mode and figure 4 shows linear grow
in time required to allocate new node for each of the nodes
used in opposite to nearly costant cost of remote process
spawn (logarithmic scale is used for visibility).

5. SUMMARY
Various techniques for MPI fault tolerance and recovery have
been proposed. While the preferred approach would for-
malize there is still need to enable mechanisms for efficient
application execution after successful recovery. Dynamic re-
source allocation is one of possible approaches. Moreover
applications that require variable system load and comput-
ing power during execution can benefit from such construct.
Is has been shown how to enable dynamic allocation of re-
sources for MPI application by tighter integration of sys-
tem runtime components. While this proved to be practical
and should not introduce major issues for portability, per-
formance and overhead costs still need to be addressed to
improve the proposed solution.
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ABSTRACT 
 
Stencil-based codes are widely used in Scientific Computing and 
are considered to be good candidates for running at scale as their 
communication depends on their local neighbours and is therefore 
independent of the number of parallel tasks. A 2-dimensional stencil 
kernel has been written to determine whether stencil-based codes do 
indeed scale on todays supercomputers. This kernel is able to 
perform halo communication that represents the communication a 
stencil code would require, for a range of data sizes and parallel 
tasks. It is shown that this kernel does not scale well on an IBM 
BGQ (Blue Joule, 64K cores), a Cray XK7 (Titan, 16K cores) and a 
Cray XC30 (ARCHER, 16K cores) even if the suggested topology 
mapping tools are used. In weak scaling tests, performance 
degradations of up to x26, x34 and x28 respectively, are observed. 
A new task-to-topology mapping scheme is presented for a torus 
network which maximises intra-node communication and minimises 
network contention. Weak scaling performance results on the IBM 
BGQ show that when using this scheme there is no performance 
degradation for all data sizes and number of parallel tasks. The 
resultant time savings give a reduction in energy consumption of up 
to 64%. 

Keywords: stencil code, 2-dimensional, weak scaling, 
mapping, performance, torus, energy. 
 

1. INTRODUCTION 
In the modern era of computations, most of the parallel applications 
tasks require to communicates with neighbors (e.g. share data with 
each others). For example, a 3-D heat diffusion problem requires a 
task to know the temperatures calculated by the tasks that have 
neighboring data. Similarly, in the environmental sciences (e.g. 
weather/climate codes), boundary points need to be updated from 
neighbouring grid points etc. Communication among the neighbours 
is one of the biggest  bottleneck in the modern simulation code’s 
performance. Even on the current machines, cost to exchange the 
data among the  neighbour’s is a critical issue and the push towards 
the Exascale (when the machines will have larger number cores > 
100000) will only exacerbate this (Modani and Porter 2015). In the 
present study, the performance of Stencil-based code, with the 
assumption that stencil codes  scale, is analyzed on two different 
architectures e.g. (IBM/CRAY). 
The theoretical scalability of stencil codes can be easily understood 
if one considers a weak scaling example. with weak scaling, using a 
stencil code with a regular mesh and regular parallel partition, each 
task will communicate with the same number of ”neighbour” tasks 
and communicate the same amount of data to these enighbour tasks 
irrespective of the number of tasks being used. As the computation 
per task remains the same in a weak scaling code, the compute to 

communicate ratio is the same irrespective of the number of 
tasks. This indicates that the execution time, in case of weak 
scaling, should remain constant with the increase in number of 
task (see the straight line in Figure 2). 
Stencil (nearest-neighbor) computations are widely used in 
scientific computing, including structured grids as well as 
implicit and explicit partial differential equation (PDE) solvers 
in domains including thermo/fluid dynamics, climate modeling  
and electromagnetics (Yongpeng and Frank, 2012). 
In this work, a stencil kernel has been written to test the 
scalability of 2-dimensional stencil-based codes. The next 
section describe the development of the stencil benchmark. The 
MPI implementation, execution and the observed performance 
on the IBM BGQ (Blue Joule), Cray XK7 (Titan) and Cray 
XC30 (ARCHER) are described in Sections 3 and 4 
respectively. Analysis of the observed poor scalability is 
discussed in Section 5. The proposed mapping scheme for 
improved scalability and energy consumption is explained in 
Sections 6 and 7 respectively. Finally conclusions are made in 
Section 8. 

2. BENCHMARK DEVELOPMENT 
A parallel two-dimensional stencil kernel has been written to 
determine how well stencil-based codes scale on modern 
supercomputers. This kernel performs the halo communication 
that a stencil code would require, but does no computation. As 
shown in Figure 1, each rank communicates with its neighbours 
in the X (east, west), and Y (north, south) directions 
respectively. Periodic boundary conditions are implemented so 
that a ring is made in the X and Y directions. For example, in the 
case of a 4x4 decomposition (shown in Figure 1), ranks 1, 5, 9 
and 13 communicate to 4, 8, 12 and 16 respectively. Similarly, 
in the Y direction, ranks 1, 2, 3 and 4 communicate to 13, 14, 15 
and 16 respectively. 
The benchmark makes use of the Message Passing Interface 
(MPI) library to communicate between tasks. To avoid deadlock 
in the MPI communication, a red-black algorithm is employed. 
All Red (even) ranks send and then receive their messages in the 
X and Y directions. All Black (odd) ranks first receive and then 
send their messages in the X and Y directions. The halo 
communication is repeated 2000 times. 
The X, Y (north, east, south, west) communication pattern is 
representative of a 2-dimensional partitioning of a 5-point 
stencil on a regular grid. The particular pattern and sizes were 
chosen to represent what is used by a large number of 
Atmosphere models in Climate and Weather Forecasting. Such 
models have a very large number of points in the horizontal and 
relatively few in the vertical (as the atmosphere height is small 
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compared to the area of the earth). Therefore these grids are 
invariably parallelised in the horizontal, leaving the vertical to run 
sequentially within a partition. Thus a partition contains a set of 
columns. The number of columns per partition will vary depending 
on the problem size and number of cores but is typically between 50 
and 100 columns for cache based architectures, with each column 
having around 100 levels. The number of columns per partition is 
likely to need to be larger for GPU-based architectures. To cover 
these cases, halo sizes were chosen which range from 3,200 bytes 
per halo (100 levels * 4 columns * 8 bytes) to 204,800 bytes (100 
levels * 256 columns * 8 bytes). Whilst the sizes were primarily 
designed to analyse the scalability of halo communication for Earth 
System Models, the halo sizes and performance results are relevant 
to other disciplines as well. 
The problem sizes were chosen to fully populate the nodes in the 
machines. Multiples of 16 were used on the IBM BGQ and Cray 
XK7. As ARCHER has 12 cores per node different sizes were 

required in this case. 

 

Fig 1: 5-point stencil on regular grid. Stencil-communication. 

 
Fig 2: Execution time in Ideal case for weak scaling. 
 
3. MACHINES 
The benchmark was run on three architectures, an IBM Blue 
Gene/Q a Cray XK7 and a Cray XC30. 

The IBM Blue Gene/Q system (Blue Joule) is a primary 
computational resource at the Hartree Centre, at STFC's 
Daresbury Laboratory in the U.K. The machine consists of 6 
racks, each rack containing 1,024 nodes, and each node has 16-
cores, 64 bit, 1.60 GHz A2 PowerPC processor. This equates to 
a total of 98,304 cores. Each node is equipped with 16 GB of 
system memory, providing a total of 96 TB of distributed 
memory across the system. Blue Joule nodes are interconnected 
by a five-dimensional "torus" network used for general purpose 
message-passing and multi-cast communication. Special purpose 
networks are provided for global collective and interrupt 
operations. 
The Cray XK7 system (Titan) is installed at the Oak Ridge 
National Laboratory (ORNL), U.S.A and has a peak 
performance of 20 petaflops. contains 18,688 nodes, with each 
holding a 16-core AMD Opteron 6274 processor and an 
NVIDIA Tesla K20 GPU accelerator. The Gemini network 
connects the Titan nodes into a direct 3D torus interconnect 
network. Gemini uses wormhole flow control internally. 
The Cray XC30 system (ARCHER), is the latest UK National 
Supercomputing Service. There are 4920 compute nodes in the 
current phase and each compute node has two 12-core Intel Ivy 
Bridge series processors giving a total of 118,080 processing 
cores. Each node has a total of 64 GB of memory with a subset 
of large memory nodes having 128 GB. The Cray Aries 
interconnect links all compute nodes in a Dragonfly topology. In 
the Dragonfly topology, 4 compute nodes are connected to each 
Aries router; 188 nodes are grouped into a cabinet; and two 
cabinets make up a group. The interconnect consists of 2D all-
to-all electric connections between all nodes in a group with 
groups connected to each other by all-to-all optical connections. 
The number of optical connections between groups can be 
varied according to the requirements of the system. ARCHER 
has 84 optical links per group giving a peak bisection bandwidth 
of over 11,090 GB/s over the whole system. 

4. OBSERVATIONS  

In this analysis, timings are limited to the measurement of the 
halo communication costs with the time consumed in MPI Init, 
MPI_Reduce and MPI_Finalize being excluded. 
The benchmark code was run on a range of cores whilst keeping 
the amount of communication per partition the same i.e. 
performing weak scaling tests, for a range of double integer 
sizes from 4*100 to 256*100 per core. As the ammount of 
communication per partition stays constant for weak scaling one 
would expect the time to remain constant (i.e. be independent of 
the number of cores) if the benchmark scaled with the number of 
cores. 
The results in Figures 3 and 4 demonstrate that stencil 
communication does not show weak scaling properties when 
running on Blue Joule and Titan. In fact, the performance is 
up to 26 times worse on Blue Joule and 34 times worse on 
Titan as the number of cores increases. 
On ARCHER the runs were limited to one size only (256*100) 
due to limited compute-time availability. Figure 5 also shows 
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that he communication time increases by up to 26 times (from 0.5 
to 13 secs) with the number of cores.  

 
Fig. 3: Weak scalability on BGQ (for default mapping) 
 

 

Fig 4: Weak scalability on Titan (for default mapping) 
 

Fig 5: Weak scalability on ARCHER (for default mapping) 
Codes that use a predictable communication pattern (as in the 
present case) can reorder the mapping of ranks to nodes to 
maximize the amount of intra-node communication via the shared 
memory system, which has a higher bandwidth and lower latency 
than inter-node communication over the network 

(http://www.archer.ac.uk). This can result in significantly 
improved communication (and thus application) performance 
and can be achieved entirely through environment variables and 
a single additional input file. The IBM Cartesian topology utility 
and Cray Performance Analysis Toolkit (CrayPAT) helps in 
generating the optimized rank file for BGQ and Cray systems 
respectively. 
The benchmark code was also run using the utility/tool-
generated rank files on Blue Joule and ARCHER respectively 
for the 256*100 problem size. Results (presented in Figure 6) 
for Blue Joule show that even with the suggested rank-
reordering, the communication cost for weak scaling increases 
with the number of cores (from 0.4 to 9 secs). On ARCHER (see 
Figure 7), the communication cost becomes constant for higher 
core counts, however, the time increases significantly from 16 
cores (0.2 secs) to 576 cores (5 secs). 

 

Fig 6: Weak scalability on Blue Joule with utility e.g. 
Cartesian topology suggested rank file. 
 

 
Fig 7: Weak scalability on ARCHER with Craypet suggested 
rank file. 
 
5. ANALYSIS 
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The degradation in performance for the stencil code benchmark, 
which was observed even when using the supplied mapping 
utilities, was analyzed on the IBM BGQ. 
The communication in the X and Y direction was analysed 
independently. It was observed that the communication in the X 
direction scales well. This is because in the majority of the 
communication is within a node and when communication is 
between nodes then the messages typically travel a single network 
hop with no other message traveling on this link. For the periodic 
boundary points the messages may need to travel more hops and 
will potential interfere with other communication by sharing links, 
but those are few. 
However, in the Y direction, for the majority of the time the 
messages are being sent/received between different nodes and may 
require multiple network hops. In the case of boundary conditions, 
the neighbour’s could be very far away and messages may need to 
travel many hops on the BGQ Torus network (Appendix-I). 
 
 

 
 
 

 

Fig 8a: Default Rank Layout and hops to travel (in Red). 
As an illustration, the communication for rank 0 and rank 11311 is 
shown in Fig. 8 (a & b). The figure illustrates the required number 
of hops to communicate for 128x128 grids point in X & Y 
directions, 16384 mpi tasks and 4x4x4x8x2  Blue Joule’s layout in 
A,B,C,D & E directions respectively. 
 
 
 
 
 
 
 
 
Fig 8b  : Default Rank Layout and hops to travel(in Red). 
 

Rank 0 (boundary point), in order to communicate with its 
neighbours, needs to travel a total of 4 hops in the x direction and 8 
hops in the y direction respectively. Similarly, for rank 11311, it 

needs to travel a total of 1 hops in the x direction and 11 hops in 
the y direction respectively. 

6. DEVISED MAPPING 
Given the above analysis a new task-to-topology mapping 
scheme was devised. The objective of the devised mapping was 
twofold: (i) maximize communication within a node and (ii) 
minimize network contention by reducing the number of hops 
required by messages. The mapping scheme does not require 
any change to the code itself, rather it involves the mapping of 
tasks to cores when the associated job is submitted. 

6.1 Intra-Node communication: 

The MPI ranks are placed in such a way that maximises the  
communication within a node. This is explained below with an 
example. 

 

Fig9 a: Default Rank Layout. Each colour represent one 
compute node. 
A BGQ compute node has 16 cores. Hence, a block of 4x4 tasks 
is made to fit within the node to maximise communication 
within the node (and therefore minimise the communication 
between nodes). In the case of a 256 core run (i.e. 16 (EW) x 16 
(NS)), there were previously a total 32 communication outside 
of each node (Fig 9 a & b). However, with the new mapping this 
reduces to 16. 

As next generation systems are expected to have relatively “fat” 
nodes this approach should continue to be beneficial. 
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Fig 9b : Proposed Layout. Each colour represent one compute 
node. 

6.2 Reduction in Network Contention: 
It is possible to reorder ranks such that communication from any 
rank to its neighbour will travel a maximum of one torus hop. On 
the IBM BGQ a hop is one portion of the path between the 
communication source and destination. Data packets pass through 
bridges, routers and gateways on the way to their destination. Each 
time packets are passed to the next device, a hop occurs. 

 

 
 

 
 
 

 

Fig10a : Proposed Rank Layout and hops to travel(in Red). 
 

The IBM BGQ Torus network allowed us to devise a general 2d 
stencil mapping algorithm which limits communication to a single 
hop including periodic boundary conditions. As each 
communication is only 1 hop, only communication from the source 
node to the target node uses the specific link associated with the 
hop. Therefore there is no contention between messages from 
different nodes (or the same node going to a different destination). 
As shown in Figure 10 (a & b), for a 128x128 grid size (16384 mpi 
tasks with a 4x4x4x8x2 layout), the maximum communication cost 
in each dimension is 1 hop for Rank 0 and rank 11311. 
 

 

 
 
 
 
 
 
 

 

 

Fig10 b : Proposed Rank Layout and hops to travel(in Red). 
The results obtained for the devised mapping are show in Figure 
11. The figure shows that, for all of the problem sizes, the 
communication cost remains constants with the number of cores. 

 

Fig 11: Weak scalability on BGQ (with devised mapping). 
 
7. ENERGY MEASUREMENT & USE 
The energy costs of the benchmark were also captured. To 
perform this analysis the benchmark needed to be run for a 
longer duration. Therefore, in this analysis the halo 
communication is repeated 12,000 times (6 times more then 
previous runs). The results are shown here for the halo size 
256*100 and the benchmark was run on 16384 cores (1 rack, i.e. 
16 nodes boards) of the IBM BGQ. The results reported from 
the node board (including rank 0) were captured for the default 
and optimised mapping cases. 

The power profile for the default mapping is shown in Figure 
12a. Execution time for this job was approximately 229 seconds 
and the average power was 1,750 Watts for the node board. This 
implies that the total energy consumed by the job is 
16*1,750*229/1000 = 6412 KiloJoules (kJ). 
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Fig 12a: Energy consumption for default mapping. 
The power profile for the optimized run is shown in Figure 12b. 
The job completed in 84 secs. No differences in power consumption 
were observed for the two different mappings. Therefore the total 
energy consumption was 16*1,750*84=2352 kJ, a 64% 
improvement. 

 

Fig 12b: Energy consumption for devised mapping. 
The average power distribution not varies between the default and 
proposed mapping. Hence from this data the default mapping does 
not increase the power required by a node-board. A power increase 
might have been expected due to e.g. extra operations required to 
route packages through intermediate nodes, but this does not appear 
to be the case.  The 64% energy saving purely comes from the 
proposed mapping taking less time than the default. 

8. CONCLUSIONS 
Weak scaling analysis was performed for a 2D halo benchmark on 
Blue Joule (up to 65K cores), Titan (up to 16K cores) and 
ARCHER (up to 16K cores) for a range of message sizes (3200 to 

204800). It was observed that the communication time increases 
with number of cores for both the default and system-suggested 
(Cartesian topology & Craypat) mapping tools. 
The proposed task-to-toppology mapping scheme maximizes the 
intra-node communication and removes network contention by 
reducing the number of hops to be traveled to communicate with 
neighbours. The results obtained with the devised mapping 
shows that communication costs remain constant with the 
number of cores for all the message sizes on Blue Joule.  It is 
also shown that the energy consumption with the proposed 
mapping is reduced by 64%. 
The Blue Gene Q (Cartesian topology) mapping tool is being 
updated to include this new mapping scheme. 
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APPENDIX 

5 Dimensional Torus for BGQ: 
The Blue Gene/Q has a five-dimensional torus, or mesh network 
topology—for partitions smaller than the 512 node, the torus 
degenerates to a mesh, but the concepts discussed here remain 
the same—with direct links between the nearest neighbors in the 
±A, ±B, ±C, ±D, and ±E directions. Note that the E dimension is 
always 2. Each node is therefore directly connected to nine 
neighbors. 

The graphical representation for a node board of 32 compute 
nodes (e.g. 2x2x2x2x2) of BGQ is shown in Fig.13. The Torus 
dimensions for node# 0, 17, 20, 28, 29 and 31 are given as 
(0,0,0,0,0), (1,0,0,1,0),(1,1,1,1,1), (1,0,1,0,0), (1,0,0,0,0) and 
(1,1,1,0,0)  respectively. Therefore, if node#0 needs to 
communicate with node#17, the message need to travel 2 hops 
(e.g. 1 hop in A and 1hop in D direction respectively). Similarly 
if node#0 sends message to node#20, the message needs to 
travel 5 hops (1 hop in each dimension e.g. A,B,C,D & E). 
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Fig 13: BGQ 5D Torus for the node board of 32 computed 

nodes (e.g. 2x2x2x2x2). The dimensions for node# 17, 20, 28, 29 

and 31 are given as (1,0,0,1,0),(1,1,1,1,1), (1,0,1,0,0), (1,0,0,0,0) 

and (1,1,1,0,0)  respectively.
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ABSTRACT
Widespread adoption of exascale computing will most likely
be heterogeneous and distributed, provided by Infrastructure-
as-a-Service (IaaS) providers. This is because heterogeneous
architectures, such as Graphic Processing Units (GPUs) and
custom accelerators implemented in Field Programmable
Gate Arrays (FPGAs), provide orders of magnitude greater
performance than multicore CPUs. The attraction of IaaS
is that it offers users a pay-per-use model while still taking
advantage of economies of scale. There are however chal-
lenges in taking advantage of the heterogeneous and IaaS
computing trends. Firstly, computational tasks need to be
expressed in a form that can be executed on these IaaS-
based, heterogeneous architectures. Secondly, these tasks
need to be partitioned across the available resources so as
to take advantage of the relative strengths of different ar-
chitectures. A domain specific approach provides solutions
to these problems by providing a portable, efficient execu-
tion framework, predictive performance modelling and au-
tomatic partitioning across platforms. An experiment using
16 multicore CPU, GPU and FPGA platforms to evaluate a
large workload of 128 Option Pricing tasks found that a do-
main specific approach to partitioning, based upon domain
knowledge performance models, outperforms naive heuristic
approaches by two orders of magnitude. These results sug-
gest that domain specificity provides a clear path for anyone,
and everyone, to access exascale computing.

Keywords
Exascale, Distributed, Cloud, IaaS, Heterogeneous Computing,
Domain Specific

1. INTRODUCTION
We argue that widespread adoption of exascale computing
will be in the form of distributed computing resources pro-
vided on a utility basis i.e. by a Infrastructure-as-a-Service
Computing provider. Furthermore, these resources will be
heterogeneous, comprised of not only Von Neumann ma-
chine CPUs, but also massively parallel compute devices
such as Graphics Processing Units (GPUs) and accelerators
implemented using reconfigurable computing devices such as
large Field Programmable Gate Arrays (FPGAs). A further
consideration is the growing range of hybrid devices that
incorporate these elements within a single device such as
Intel’s Xeon Phi and Xilinx’s Zynq system-on-chips.
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Figure 1: Comparison of different methods for
allocating tasks to distributed, heterogeneous
computing platforms. We introduce the domain-
based approaches.

As of January 2015, a hypothetical exascale system would
cost ≈ 82 $/s in either the Amazon Web Services (AWS) [14]
or the Google Compute Engine IaaS offerings. An IaaS sys-
tem is attractive as it allows users to share the total cost of
ownership while also taking advantage of economies of scale.
However, the millions of CPUs required is far beyond that
which could be made available to a single user currently. If
however Cloud-based GPUs are considered, currently only
hundreds of thousands of devices would be required for ex-
ascale.

A further challenge is that partitioning the workload upon
millions of CPU would be a considerable computational prob-
lem in its own right. However considering GPUs, hundreds
of thousands of devices would be required, making the parti-
tioning problem more tractable.

The use of IaaS FPGAs would also be advantageous as these
devices typically provide throughput acceleration compara-
ble to, and often exceeding high-end GPUs as well as order
of magnitudes energy saving over CPUs and GPUs. Al-
though the use of IaaS-based FPGAs is nascent, Microsoft
has recently had success accelerating cloud-based applica-
tions such as their Bing search engine [12], while vendors
such as Maxeler now provide publicly accessible cloud FPGA
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offerings. Increasingly these reconfigurable devices also sup-
port the same level of design abstraction, supporting lan-
guages such as OpenCL, C and C++, making them usable
by high performance software engineers with limited embed-
ded hardware design expertise.

We claim that domain specific abstractions can realise the
opportunities of the heterogeneous IaaS by providing three
features: Portability - the capability to execute a single task
description upon a wide range of platforms efficiently. Pred-
ication - characterisation models of the domain specific com-
putation outputs that allow for the relationship between a
particular task and platform to be quantified. Partitioning
- the structure of the application domain can unify the pre-
dictive models, allowing for various techniques to be applied
so as to produce workload partitions.

To illustrate our claims, in this paper we have applied this
approach to the demanding domain of computational fi-
nance. We show how the fundamental concepts within the
domain can be captured as types and operations, which can
be executed upon a range of heterogeneous platforms. We
also describe the financial domain metrics of latency and
accuracy and show how they can be modelled. Finally, we
apply domain knowledge to partitioning, showing that the
domain metric models can be used to formulate an optimi-
sation problem that can be solved for optimal partitions.

Our initial experiments on evaluating our domain specific
approach upon heterogeneous cluster support this claim.
Our cluster was comprised of 16 CPU, GPU and FPGA
computing platforms, 6 of which were located in the AWS
cloud. Using our open source application framework for fi-
nancial option pricing, the Forward Financial Framework1,
we have validated all three properties for a PetaFLOP scale
workload. The implementations automatically generated by
our framework deliver comparable performance to state-of-
art, platform-specific ones. The predictive domain latency
and pricing accuracy models are within 10% of the true
values in the worst case. Finally, the workload partitio-
ning achieved using the Mixed Integer Linear Programming
(MILP) approach shows a 100% or greater improvement over
a heuristic-based approach to workload partitioning.

2. BACKGROUND
2.1 Domain Specific Heterogeneous Computing
An important finding in recent years is that domain spe-
cific abstractions enable improved performance in the het-
erogeneous computing context [3, 8]. As alluded to in the
introduction, empirical studies of software engineering [11]
have found that a small set of design patterns within an
application domain are executed disproportionately more
frequently than others, often following a Power Law dis-
tribution. Indeed, application domains are often identified
by grouping these patterns together [13]. By supporting
the efficient, heterogeneous acceleration of these dispropor-
tionately influentially patterns, significant gains can be re-
alised automatically for programs restricted to a particular
domain.

1https://github.com/Gordonei/
ForwardFinancialFramework

We call this property portable performance. Previous works
have shown this portable performance property in practice
through Domain Specific Languages (DSL), as shown by
Chafi et al [3], or application frameworks, as per our own
previous work [8]. However putting this approach into prac-
tice remains a challenge, requiring system developers with
domain expertise to create domain specific abstractions [8]
that support heterogeneous execution. Chafi et al’s [3] ap-
proach advocates the use of language virtualisation, provid-
ing both a framework for creating implicitly parallel domain
specific languages as well as a runtime for supporting appli-
cations created using such languages.

2.2 Partitioning across Distributed Computing
When considering the allocation of tasks to heterogeneous
computing resources, the general scenario considered in the
literature, i.e. [2, 10, 5, 4] is a set of independent or atomic
tasks being partitioned across multiple heterogeneous plat-
forms. It is assumed that a task will occupy any of the
computing resource completely if allocated to that resource.
It is also commonly assumed that the partitioning is being
performed statically, in advance of the execution of any of
the tasks.

In this scenario, the general objective is to minimise the
makespan. The makespan is the latency between when the
first task is initiated until the last result returned for the task
set. As the tasks are being evaluated on multiple platforms,
the makespan is equivalent to the longest time it takes for
any of the platforms to return the results of the tasks allo-
cated to it.

Surveying the literature, there are three suggested approaches
to the partitioning problem:

Naive Heuristics [2, 7]: a simple algorithmic rule is applied
to allocate tasks to the available resources. Under specified
circumstances such a rule might achieve a provably optimal
allocation of tasks, and there is usually a worst case bound
on the quality of the solution relative to the optimal solution.

Numerical Optimisation [5, 10]: a feasible task-platform
allocation is improved using numerical optimisation tech-
niques such as the Simplex algorithm, simulated annealing
or genetic algorithms using predictions of the task perfor-
mance for a given allocation.

Integer Linear Programming [4]: the optimisation problem
formulated above can be solved using integer linear program-
ming techniques, which in addition to applying the numeri-
cal optimisation above use a dual formulation of the problem
to prove the optimality of the solution.

3. DOMAIN SPECIFIC APPROACH
We now describe the domain specific approach as applied
to the real world application domain of derivatives pric-
ing, within the larger subject area of computational finance.
Computational finance is concerned with the determination
and management of risk, an attempt to quantify the inherent
operational unknowns in an uncertain world.

Derivatives pricing is an important activity in modern com-
merce, with the volume of products currently being traded
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Figure 2: Domain Specific Approach to distributed,
heterogeneous computing. Illustrated using the ex-
ample of the domain of derivatives pricing and the
Forward Financial Framework(F 3).

amounting to trillions of dollars. The financial modelling
techniques used are extremely computational intensive, and
as a result banks are a major consumer of high perfor-
mance computing. The use of clusters of heterogeneous
computing technologies such as multicore CPUs and GPUs
is widespread.

3.1 Portable Execution
3.1.1 Domain Types and Operations

Each derivative pricing task can be subdivided into two com-
ponents, the derivative contract or product, such as an op-
tion, which is being valued and the underlying asset from
which that derivative derives its value [6]. The underly-
ing asset encapsulates the probabilistic model, such as the
Black-Scholes or Heston, being used to model the behaviour
of the asset under consideration, for example a stock or com-
modity price. The derivative product embodies the details
of the option contract both during the lifetime of the option
as well at its expiration.

The pricing domain’s sole operation is finding the price of a
domain entity. Only applying the price operation to deriva-
tive types is of interest, as by definition underlyings can pro-
vide their price at any point in time. Multiple, varied tech-
niques such as Monte Carlo or Tree-based methods could be
used to implement the pricing operation, provided the end

result is the price of the derivative product under consider-
ation.

The popular Monte Carlo technique for option pricing uses
random numbers to create potential scenarios or paths for
the underlying asset based upon a model of its price evolu-
tion. The average outcome of these paths is then used to
approximate the most probable option value.

3.1.2 Implementation
We have created the Forward Financial Framework (F 3),
an open source financial domain application framework to
support the portable execution of Monte Carlo pricing upon
multicore CPUs, GPUs and FPGAs. At the high level, F 3

allows for option pricing tasks to be described using a library
of Python objects. This single task description can then be
executed automatically by the framework upon a variety of
backends: GCC and POSIX threads for multicore CPUs,
OpenCL for GPUs, Xeon Phis and Altera FPGAs and the
Maxeler tools for FPGAs. Previous work [8, 9] has described
the framework in greater detail, as well as demonstrating
that its automatically generated implementations are close
to or better performing than those created by device experts.

3.2 Prediction
We have developed models for the domain metrics of latency
and price accuracy for the pricing operation in our domain,
as implemented using the Monte Carlo algorithm in F 3.

Latency Model : the latency between when a pricing opera-
tion is initiated and when it returns a price is fundamentally
important within the financial domain [6]. This is because
the time at which prices or information are available to mar-
ket actors fundamentally affects the market as a result of
behaviour in response to this information. Minimising the
latency of the pricing operation is often desirable, as this
confers first-mover advantage to pricer.

We have used a linear latency model:

L(n) = βn+ γ (1)

Where the coefficient of the number of paths (n), is β. This
represents the time spent per Monte Carlo simulation. γ
represents the constant component of the task latency. This
would capture the time spent initialising the computation
within the operating system of the target platform, as well
as any time spent communicating the task to and returning
the result from the platform.

Accuracy Model : in the financial domain, the accuracy of a
computed price is expressed in probabilistic terms. When
using the Monte Carlo technique, often the 95% confidence
interval is used, which gives the size of the finite interval
around the computed price for which there is a 95% confi-
dence that the true value lies within that interval. As small
a confidence interval as possible is desired, as this means for
the given confidence level the pricing result is close to the
true value, and hence less risk has to be accounted for.

The accuracy model that we used is based upon the conver-
gence of the Monte Carlo algorithm, which is given by the
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inverse square root of the number of simulations, i.e. 1√
n

,

scaled by a coefficient (α).

The accuracy model is:

C(n) =
α√
n

(2)

Combined Model : to relate the two domain metrics of la-
tency and accuracy, we can then solve for number of paths
parameter, n, and use it to relate Equations 1 and 2, i.e.

L(C) =
δ

C2
+ γ

where δ = βα2
(3)

3.3 Partitioning
3.3.1 Formulating the Partitioning Problem

In Equation 4 the combined model described in Equation
3 has been applied in a constrained integer linear program
to minimise the makespan of τ Tasks implemented upon
µ Platforms. The optimisation is performed over a binary
matrix, A, where Ai,j = 1 represents an allocation of task
j to platform i. The vector C gives the required accuracy
for each task, while δ and γ are matrices that provide the
proportional and setup components for each task upon each
platform. Hence, the element-wise division and addition op-
eration, δ : C2 + γ, captures the combined model in Equa-
tion 3

minimise
A∈{0,1}µ×τ

GL(A,C) C ∈ Rτ+

subject to

µ∑
i=1

Ai,j = 1 j = 1, 2, . . . , τ
(4)

where:

GL(A,C) = max(FL(A,C))

FL(A,C) = ((δ : C2 + γ) ◦A) · 1
δ ∈ Rµ×τ+ ,γ ∈ Rµ×τ+

Two reduction functions, GL and FL, are defined. FL, the
task reduction function, reduces all of the tasks latencies
to a vector of length µ, where each entry corresponds to
the total latency for that platform for the given allocation.
GL, the platform reduction function, reduces all of the plat-
form latencies to a single scalar value, in this instance the
makespan.

We have investigated three approaches to partitioning work
automatically, one from each of the earlier identified cate-
gories.

3.3.2 Heuristic Allocations
The first allocation approach we propose is intuitive: The
best platform heuristic allocates all of the tasks to the sin-
gle platform that completes all the tasks with the shortest
latency. The second instance of this approach, the propor-
tional allocation heuristic as given in equation 5, is a minor

refinement of this, allocating work in proportion to the total
latencies, L, of all of the platforms.

~A =

[ 1

L̂i∑µ
o=0

1

L̂o

]
i = 1, 2, . . . , µ (5)

This approach only requires an estimate of the total latency
of all tasks upon each platform. As is to be expected, the
best platform heuristic performs well when there is a single
platform within the set that can complete the tasks signif-
icantly faster than the others available. The proportional
allocation heuristic is more general, working well when the
magnitude of γ is significantly smaller than the magnitude
of δ : C2.

3.3.3 Numerical Optimiser-based Allocation
The second approach builds upon the first, using either the
best platform or proportional allocation heuristics as a start-
ing, however it also uses the metric model-predicted setup
latency(γ) and proportional latency (δ : C2) information of
each task upon each platform. GL is specified as the ob-
jective function for a simulated annealing optimisation al-
gorithm with a final “polishing” step performed using the
simplex algorithm. By using the task-platform information,
this approach should improve upon the intutive heuristics
described above.

3.3.4 Integer Linear Programming-based Allocation
Similar to the Numerical Optimiser approach, the ILP ap-
proach uses the formulation of the domain partitioning prob-
lem, as given in 3.3.1, as the input to a formal linear pro-
gramming framework, SCIP [1]. SCIP applies various op-
timisation techniques as well as a variety of heuristic ap-
proaches to solve this constrained program.

4. EVALUATION
4.1 Experimental Setup
An overview of the heterogeneous platforms that we used in
our evaluation are described in Table 1. The first two dimen-
sions of platform heterogeneity is device type and vendor -
we have made use of a wide array of multicore CPUs, GPU
and FPGA-based computational platforms from many dif-
ferent manufacturers. The final dimension is the diversity of
interconnections used between the computational platforms.

The pertinent computational characteristics of the platforms
are also described in Table 1. We describe the compute capa-
bilities of the experimental platforms using an option pricing
benchmark2 and F 3’s implementations. As the Monte Carlo
algorithm being used is amenable to parallel execution, it is
unsurprising that GPUs provide the best application perfor-
mance. We have also provided the network latency for each
platform. We expect the former to dominate the propor-
tional coefficient of the latency models, β, while the latter
will determine the constant coefficient, γ. Not reflected is
energy consumption, for which the FPGA platforms are no-
tably more than an order of magnitude more efficient than
the others.
2http://www.uni-kl.de/en/benchmarking/
option-pricing/
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Table 1: Overview of Experimental Heterogeneous Computing Platforms

Device
Category

Device
Designation Device

Network
Location

Application
Performance
(GFLOPS)

Network
RTT
(mS)

CPUs

Desktop Intel R© Core R© i7-2600 Localhost 5.916 0.024
Local Server AMD R© Opteron R© 6272 LAN 27.002 0.380

Local Pi ARM R© 11 76JZF-S LAN 0.049 2.463
Remote Server Intel R© Xeon R© E5-2680 WAN 11.523 3300.000

AWS Server EC1 Intel R© Xeon R© E5-2680 WAN 12.269 88.859
AWS Server EC2 Intel R© Xeon R© E5-2670 WAN 4.913 88.216
AWS Server WC1 Intel R© Xeon R© E5-2680 WAN 12.200 157.100
AWS Server WC2 Intel R© Xeon R© E5-2670 WAN 4.926 159.578

GCE Server Intel R© Xeon R© WAN 6.022 111.232

GPUs

Local GPU 1 AMDR© FirePro R© W5000 LAN 212.798 0.269
Local GPU 2 NvidiaR© Quardo R© K4000 LAN 250.027 0.278
Remote Phi IntelR© Xeon Phi R© 3120P WAN 70.850 3300.000

AWS GPU EC NvidiaR© Grid R© GK104 WAN 441.274 88.216
AWS GPU WC NvidiaR© Grid R© GK104 WAN 406.230 159.578

FPGAs
Local FPGA 1 XilinxR© Virtex R© 6 475T LAN 114.590 0.217
Local FPGA 2 AlteraR© Stratix R© V D5 LAN 161.074 0.299

Figure 3: Relative error of latency models for a fixed
runtime target and varying benchmark time
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We used a workload of 128 option pricing tasks, with Euro-
pean, Barrier, Double Barrier, Digital Double Barrier option
varieties, as well as Heston and Black-Scholes model-based
underlyings. The fixed parameters, such as the proprieties
of underlying model, were generated using uniform random
numbers within the values from the aforementioned option
pricing benchmark2. A rejection procedure was utilised to
keep the relative magnitude of the pricing tasks similar.

4.2 Results
Domain Model : The latency model results are given in Fig-
ures 3 and 4. The latency models are evaluated using the
geometric mean of the relative error of the platforms in the
three device categories.

Figure 4: Relative error of latency models for a fixed
benchmark time and varying runtime targets
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Figure 3 illustrates that as a longer benchmarking procedure
is performed relative to the fixed runtime of 4.69 seconds per
task (10 minutes for all of the tasks) being predicted by the
model, the models became more accurate. This suggests
that the models benefit from additional information, which
suggests the task-device dynamic is being captured.

Figure 4 shows how the models scale as the runtime predic-
tion target is increased for a fixed benchmarking time (again,
600 seconds in total or 10 minutes for all of the tasks). The
results demonstrate that for a runtime target of more than
an order of magnitude greater than the benchmarking pro-
cedure, the latency models scale well, with only a modest
increase in error for problem runtimes an order of magni-
tude greater than the benchmarking time.
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Figure 5: Resulting pareto curves from different
partitioning approaches. Dotted line is the output
of the domain partitioners, while the solid line is the
actual performance
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Domain Partitioner : Figure 5 illustrates our evaluation of
how different partitioning approaches based upon the model
data match what is achieved in reality closely. Furthermore,
both the numerical optimiser and MILP-based partitioner
are orders of magnitude more efficient than that suggested
by the naive proportional heuristic for much of the accuracy
range analysed.

5. CONCLUSION
Fundamentally, we view the diverse performance seen in het-
erogeneous computing as a design feature, as opposed to a
challenge that must be overcome. We have sought a means
to take advantage of the relative strengths of each platform
in a complimentary fashion.

In this paper we have described and demonstrated in prac-
tice that a domain specific approach to heterogeneous computing
offers portability, prediction and partitioning. We assert
that these three features are necessary for the distributed,
heterogeneous exascale computing systems of the future. We
used a case study from computational finance to illustrate
how these three features features are supported. Using the
same case study, we verified these features experimentally,
using a large workload of option pricing tasks upon a cluster
of heterogeneous computing resources.
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ABSTRACT
Designing a scientific software stack to meet the needs of
the next-generation of mesh-based simulation demands, not
only scalable and efficient mesh and data management on
a wide range of platforms, but also an abstraction layer
that makes it useful for a wide range of application codes.
Common utility tasks, such as file I/O, mesh distribution,
and work partitioning, should be delegated to external li-
braries in order to promote code re-use, extensibility and
software interoperability. In this paper we demonstrate the
use of PETSc’s DMPlex data management API to perform
mesh input and domain partitioning in Fluidity, a large scale
CFD application. We demonstrate that raising the level of
abstraction adds new functionality to the application code,
such as support for additional mesh file formats and mesh re-
ordering, while improving simlutation startup cost through
more efficient mesh distribution. Moreover, the separation
of concerns accomplished through this interface shifts criti-
cal performance and interoperability issues, such as scalable
I/O and file format support, to a widely used and supported
open source community library, improving the sustainabil-
ity, performance, and functionality of Fluidity.

Keywords
Mesh, topology, partitioning, renumbering, Fluidity, PETSc

1. INTRODUCTION
Scalable file I/O and efficient domain topology management
present important challenges for many scientific applications
if they are to fully utilise future exascale computing re-
sources. Although these operations are common to many
scientific codes they have received little attention in opti-
misation efforts, resulting in potentially severe performance
bottlenecks for realistic simulations that require and gener-
ate large data sets. Moreover, due to a multitude of formats
and a lack of convergence on standards for mesh and output
data in the community there is only limited interoperability
and very little code reuse among scientific applications for
common operations, such as reading and partitioning input
meshes. Thus developers are often forced to create custom
I/O routines or even use application-specific file formats,
which further limits application portability and interoper-
ability.

Designing a scientific software stack to meet the needs of
the next-generation of simulation software technologies de-
mands, not only scalable and efficient algorithms to perform
data I/O and mesh management at scale, but also an ab-

straction layer that allows a wide variety of application codes
to utilise them and thus promotes code reuse and interoper-
ability. Such an intermediate representation of mesh topol-
ogy has recently been added to PETSc [3], a widely used
scientific library for the scalable solution of partial differen-
tial equations, in the form of the DMPlex data management
API [14].

In this paper we demonstrate the use of PETSc’s DMPlex
API to perform mesh input and domain topology manage-
ment in Fluidity [17], a large scale CFD application code
that already uses the PETSc library as its linear solver en-
gine. By utilising DMPlex as the underlying mesh man-
agement abstraction we not only add support for new mesh
file formats, such as Exodus II [20], CGNS [18], Gmsh [9],
Fluent Case [2] and MED [1], to Fluidity, but also enable
the use of domain decomposition methods, data migration,
and mesh renumbering techniques at run-time. Moreover,
the separation of concerns allows PETSc parallel data man-
agement and HDF5 support to be independently optimized
for the target platform, removing this complexity from the
application code. Our refactoring of Fluidity provides sig-
nificant performance benefits due to improved cache locality
and mesh distribution during simulation initialisation, which
we demonstrate with performance benchmarks performed on
Archer, a Cray XC30 architecture.

2. BACKGROUND
The key challenge in designing software for large scale sys-
tems lies in the composition of abstractions and the defini-
tion of clearly defined yet flexible interfaces between them.
Code reuse and inter-disciplinary cooperation necessitate
deeper software stacks and thus configuration and exten-
sibility will play a key role in designing the software stack of
the future [5]. In this paper we therefore focus on the inter-
action between applications and their supporting libraries
to provide the infrastructure for efficient data management
at exascale.

2.1 Fluidity
The primary user application in our work is Fluidity, an
open source unstructured finite element code that uses mesh
adaptivity to accurately represent a wide range of scales in
a single numerical simulation without the need for nested
grids. Fluidity is used in a number of different scientific areas
including geophysical fluid dynamics, computational fluid
dynamics, ocean modelling and mantle convection. Fluidity
implements various finite element and finite volume discreti-
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sation methods and is capable of solving solving the Navier-
Stokes equation and accompanying field equations in one,
two and three dimensions.

Previous optimisation efforts have highlighted that file I/O,
in particular during model initialisation, presents a severe
performance bottleneck when running on large numbers of
processes [11]. The primary reasons for this are a off-line
domain partitioning and the need to store each partition
using a file-per-process strategy.

2.2 DMPlex
PETSc’s ability to handle unstructured meshes is centred
around DMPlex, a data management object that encapsu-
lates the topology of unstructured grids to provide a range of
functionalities common to many scientific applications. As
shown in Figure 1, DMPlex stores the connectivity of the
associated mesh as a layered directed acyclic graph (DAG),
where each layer (stratum) represents a class of topological
entities [14, 16]. This flexible yet efficient representation pro-
vides an abstract interface for the implementation of mesh
management and manipulation algorithms using dimension-
independent programming.
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Figure 1: DAG-based representation of a single tetrahedron
in DMPlex.

DMPlex stores data by associating data with points in the
DAG, allowing an arbitrary data size for each point. This
can be efficiently encoded using the same AIJ data structure
used for sparse matrices. This scheme is general enough
to encompass any discrete data layout over a mesh. The
association with points also means that data can be moved
using the same set of scalable primitives that are used for
mesh distribution.

DMPlex’s internal representation of mesh topology also pro-
vides an abstraction layer that decouples the mesh from the
underlying file format and thus allows support for multi-
ple mesh file formats to be added generically. At the time
of writing DMPlex is capable of reading input meshes in
Exodus II, CGNS, Gmsh, Fluent-Case and MED formats.
Moreover, DMPlex provides output routines that generate
solution output in HDF5-based XDMF format, while also
storing the DMPlex DAG connectivity alongside the visual-
isable solution data to facilitate checkpointing [3].

In addition to a range of I/O capabilities DMPlex also pro-
vides parallel data marshalling through automated paral-
lel distribution of the DMPlex [15] and the pre-allocation
of parallel matrix and vector data structures. Mesh par-
titioning is provided via internal interfaces to several par-

titioner libraries (Chaco, Metis/ParMetis) and data migra-
tion is based on PETSc’s internal Star Forest communica-
tion abstraction (PetscSF) [3]. Additionally, DMPlex is de-
signed to provide the connectivity data and grid hierarchies
required by sophisticated preconditioners, such as geomet-
ric multigrid methods and “Fieldsplit” preconditioning for
multi-physics problems, to speed up the solution process [4,
6].

2.3 Mesh Reordering
Mesh reordering techniques represent a powerful performance
optimisation that can be utilised to increase cache coherency
of the matrices required during the solution process [10, 12,
21]. The well-known Reverse Cuthill-McKee (RCM) algo-
rithm, which can be used to reduce the bandwidth of CSR
matrices, is implemented in PETSc allowing DMPlex to
compute the required permutation of mesh entities directly
from the domain topology DAG. The resulting permutation
can then be applied to any discretisation derived from the
stored mesh topology to improve the cache coherency of the
associated CSR matrices.

3. FLUIDITY-DMPLEX INTEGRATION
Initial mesh input has been a scalability bottleneck in Flu-
idity due to the off-line mesh partitioning step. As illus-
trated in Figure 2a, the current preprocessor module uses
Zoltan [8], which use ParMetis [13] for graph partitioning,
to partition and distribute the initial simulation state to the
desired number of processes before writing the partitioned
mesh and data to disk, allowing the main simulation to read
the pre-partitioned data in a parallel fashion.

Fluidity’s parallel mesh initialisation routines, however, rely
on a file-per-process I/O strategy that require large num-
bers of individual files when running the application at scale.
This has been shown to put significant pressure on the meta-
data servers in distributed filesystems, such as Lustre or
PVFS, which ultimately has a detrimental effect on scala-
bility when using sufficiently large numbers of processes [11].

3.1 Parallel Simulation Start-up
One of the objectives of this work, in addition to enhacing
functionality and usability, is to alleviate Fluidity’s start-up
bottleneck by utilising DMPlex’s mesh distribution capa-
bilities to perform mesh partitioning at run-time. For this
purpose, as shown in Figure 2b, a DMPlex topology ob-
ject is created from the initial input mesh and immediately
partitioned and distributed to all participating processes, al-
lowing Fluidity’s initial coordinate field to be derived from
the DMPlex object in parallel. From the initial coordinate
mesh all further discretisations and fields in the simulation
state are then derived using existing functionality.

Using DMPlex as an intermediate representation for the un-
derlying mesh topology has the following advantages:

• Run-time mesh distribution and load balancing removes
the need to store the partitioned mesh on disk, thus
removing two costly I/O operations and reducing Flu-
idity’s disk space requirements.

• Communication volume during startup is reduced, since
only the topology graph is distributed. This is in con-
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trast to the preprocessor, which partitions and dis-
tributes a fully allocated Fluidity state with multiple
fields.

• Support for multiple previously unsupported mesh file
formats is inherited from DMPlex, increasing applica-
tion interoperability.

Mesh Fields Fields Mesh Fields

Preprocessor Fluidity

Zoltan

(a) Original Fluidity start-up based on off-line pre-processing.

Mesh DMPlex DMPlex Fields

Fluidity

DMPlexDistribute

(b) DMPlex-based start-up where an initial DMPlex object is
distributed at run-time.

Mesh DMPlex DMPlex Fields

Fluidity

Load Balance

(c) Potential future workflow, where DMPlex performs the ini-
tial mesh read in parallel before a parallel load balancing step.

Figure 2: Workflow diagram for Fluidity simulation start-
up.

A key point to note about the DMPlex-based mesh initiali-
sation approach is that by delegating the initial mesh read to
PETSc any mesh format reader added to DMPlex in the fu-
ture will automatically be inherited by the application code.
Moreover, future performance optimisations, such as paral-
lisation of the initial mesh file read, will also be available
in Fluidity without any further changes to the application.
Such an envisaged scenario is shown in Figure 2c, where an
already parallel DMPlex object is created from the initial
file, followed by a load balancing step before deriving the
parallel Fluidity state.

3.2 Mesh Renumbering
One of the key components of the DMPlex integration is
the derivation of Fluidity’s initial coordinate mesh object
from the distributed DMPlex, which includes the derivation
of the data mapping required for halo exchanges in parallel.
DMPlex is able to provides such a mapping from local non-
owned degrees-of-freedom (DoFs) to their respective remote
owners. However, since Fluidity halo objects require remote
non-owned DoFs in the solution field to be located contigu-
ously at the end of the solution vector (“trailing receives”
assumption), a node permutation is required when deriv-
ing Fluidity data structures from the mapping provided by
DMPlex.

As a consequence, further node ordering permutations may
be applied during the derivation of the initial field discreti-
sation, such as the RCM renumbering provided by DMPlex.
An optional renumbering step can be performed locally after
the initial mesh distribution and added to the mesh initial-
isation routine with very little programming effort. As a

result of Fluidity’s run-time derivation of field discretisa-
tions from the underlying coordinate mesh, the RCM data
layout of the initial reordering is inherited by all fields in the
simulation, as shown in Figure 3. Moreover, as new mesh
renumbering schemes are incorporating into PETSc, they
will be automatically available to the application code.

(a) Sequential, native (b) Sequential, RCM

(c) 2 MPI ranks, native (d) 2 MPI ranks, RCM

Figure 3: Effects of RCM reordering on the structure of the
assembled pressure matrix.

4. RESULTS
The following benchmark tests were performed on the UK
national supercomputer, a Cray XE30 with 4920 nodes con-
nected via an Aries interconnect and a parallel Lustre filesys-
tem 1. Each node consists of two 2.7 GHz, 12-core Intel
E5-2697 v2 (Ivy Bridge) processors with 64GB of memory.

The benchmark runs simulate the flow past a square cylinder
for 10 timesteps using a PDG

1 −P2 discretisation [7], where a
second-order pressure field is solved using Fluidity’s multi-
grid algorithm and paired with a discontinuous first order
velocity field that uses a GMRES solver with SOR precon-
ditioning. The mesh used has been generated with the Gmsh
mesh generator [9] and is shown in Figure 4.

4.1 Mesh Initialisation
Figure 5 shows a comparison of the simulation start-up cost
between the DMPlex-based implementation and the original
preprocessor approach on 4 nodes (96 cores) with increasing
mesh sizes up to approximately 3 million elements (weak
scaling). The original start-up cost is hereby quantified as
the sum of preprocessor and simulation initialisation times.

A clear improvement in overall start-up performance is shown
in Figure 5a, although no significant improvement in direct

1http://www.archer.ac.uk/
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Figure 4: Three-dimensional benchmark mesh used to model
flow past a cylinder.

file I/O, as shown in Figure 5b, can be determined. This
is unsurprising, as file I/O is still completely dominated by
the initial sequential read, although potential gains can be
expected at larger scales due to removing the intermediate
reads and writes of the partitioned mesh.

As highlighted in Figure 5c, the majority of the observed
overall performance gains can be attributed to significantly
improved mesh distribution via DMPlex. It is important
to note here that DMPlex partitions and migrates only the
mesh topology graph and its associated coordinate values, in
contrast to the original preprocessor module that distributes
fully assembled fields. As a result less data needs to be
communicated during the mesh migration phase, resulting
in significantly increased start-up performance.

4.2 Mesh Renumbering
The overall simulation performance, including the effects of
the mesh reordering derived from DMPlex, are evaluated
in Figure 6. This benchmark compares the performance
of both implementations by running 10 timesteps of the
full simulation using a mesh with approximately 3 million
elements on up to 96 cores. The results, shown in Fig-
ure 6a, indicate a consistent performance improvement of
the DMPlex-based model with native mesh ordering over the
preprocessor approach that increases with growing numbers
of processes due to a smaller start-up overhead.

The effect of RCM mesh reordering is best demonstrated by
analysing the two most expensive components of the simula-
tion: the pressure field solve (Figure 6b) and the assembly of
the velocity matrix (Figure 6c). Both components exhibit
significant performance increases with RCM reordering on
small numbers of processors that diminish as the simulation
approaches the strong scaling limit. However, the benefits
for overall simulation performance (Figure 6c) with RCM
reordering decrease between 24 and 96 processes due to the
fixed-cost start-up overhead of generating the permutation
outweighing the solver and assembly benefits.

5. DISCUSSION
Achieving scalable performance with production-scale scien-
tific applications on future exascale systems requires appro-
priate levels of abstraction across the entire software stack.
In this paper we report progress on the integration of DM-
Plex, a library-level domain topology abstraction, with the
application code Fluidity in order to delegate a set of com-
mon mesh and data management tasks to a widely used li-
brary. We highlight the increased interoperability achieved
through the inheritance of new mesh file format readers
and demonstrate improved model initialisation performance
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Figure 5: Comparison of total start-up cost between prepro-
cessor and DMPlex-based approaches.
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Figure 6: Full simulation performance for 10 timesteps on
approximately 3 million elements.

through run-time mesh distribution routines provided by
DMPlex.

The key benefit of the restructured model initialisation work-
flow, however, lies in the fact that responsibility for support-
ing various mesh file formats and optimising mesh file I/O
now lies with the underlying library. This entails that any
future extensions, such as new file formats or parallel mesh
reader implementations, are automatically inherited by Flu-
idity, as well as other applications using PETSc, such as
Firedrake [19] where we have also employed these abstrac-
tions. Moreover, by utilising a centralised mesh management
API other types of mesh-based performance optimisations
become available to the application, as highlighted by the
seamless addition of the RCM renumbering feature.

5.1 Future Work
A key contribution of this work lies in the fact that it enables
future extensions and optimisations. Most crucially perhaps
is the development of a fully parallel mesh input reader in
PETSc in order to overcome the remaining sequential bot-
tleneck during model initialisation. This change, however,
requires a new default mesh format for Fluidity due to the
inherently sequential nature of the Gmsh file format, which
again highlights the need for abstraction when optimising
mesh management.

In addition to the optimisation of mesh input and model ini-
tialisation, further integration of DMPlex throughout Flu-
idity is desirable to utilise DMPlex’s advanced I/O features,
such as the HDF5-based Xdmf output format. For this pur-
pose closer integration is required, where additional discreti-
sation data needs to be passed to PETSc to perform all the
necessary field I/O. Moreover, DMPlex’s mesh and data dis-
tribution utility may also be used to provide load balancing
after mesh adaptation.
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ABSTRACT
Prototyping is a common approach to developing new sci-
entific codes. Through prototypes a scientist builds confi-
dence that an idea can in fact work for a scientific chal-
lenge, and the prototype also acts as the definitive design
for a final implementation. As supercomputing approaches
exaflops performance, the teraflops platforms that are avail-
able for prototyping becomes increasingly distant from the
target performance, and new tools are needed to help close
the performance gap between high productivity prototyp-
ing and high performance end-solutions. In this work we
propose Bohrium, an open-source just-in-time compiler, as
a possible solution to the prototyping problem. We will
show how the same Python program can execute seamlessly
on single-core, multi-cores, GPGPU and cluster architec-
tures, and thus eliminating the need for parallel program-
ming in the prototype stage. We will show how the same,
unmodified, Python implementation of a Jacobi solver, a
Black-Scholes pricing, an O(n2) complexity n-body simula-
tion, and a Shallow-Water simulation scales to a 32-core ma-
chine with 50.1, 29.8, 17.3, and 44.4 speedups compared to
the NumPy execution, while the same Python benchmarks
run on a NVidia GTX 680, achieves speedups of 55.7, 43.0,
77.1, and 140.2, and a eight node cluster with gb-ethernet
interconnect (256 cores in total), obtain speedups of 4.1, 7.9,
6.6 and 6.4, compared to a single 32 core node.

1. INTRODUCTION
While achieving exascale-computing in itself is a huge tech-
nical task, bringing scientific users to a competence level
where they can utilize an exascale machine is likely to pose
problems of the same scale. While large codes, maintained
by a research community, is likely to make the transition
from peta- to exascale as a natural evolution in the code,
smaller teams will be hard pressed to make the move to
exascale. One of the challenges that face researchers that
write their own codes is that of prototyping. Today most
teams will move from idea to code via a prototype, typi-
cally in Matlab, IDL, Python or a similar high productivity
programming language.

Prototyping is an essential tool for testing the scientific hy-
pothesis in small scale before spending more time on an ac-
tual implementation, since many scientific expressions do

Idea Days Proto-
type 

Full 
version 

Months 

Matlab C++ Paper 

Figure 1: Prototyping workflow

not easily translate into algorithms, and issues such as nu-
merical stability, etc. are often not investigated formally.
Thus the actual workflow for scientific codes is often itera-
tive as shown in figure 1 below. Scientists will test their idea
in a high productivity environment, using a small dataset,
typically a ratio of one to a thousand, on a conventional,
but large, computer, before moving on to an actual super-
computer for the real scale experiments.

With respect to exascale computing this approach poses a
significant challenge, while exascale machines will be build
by scaling supercomputers to a core count two orders of
magnitude, in the order of 100 million, no such explosion
in high-end servers is guaranteed, or even likely. Thus while
researchers today, are expected to move three orders of mag-
nitude, from teraflops to petaflops, when moving from proto-
type to final implementation, prototyping is likely to remain
at teraflop when supercomputers move to exaflops, and re-
searchers will have to move six orders of magnitude. Even
scaling three orders of magnitude as is done today is non-
trivial and often problems arise that were not detected by
the prototype, when this challenge is increased another three
orders of magnitude it is unlikely that the current approach
will be sustainable.

Thus it makes sense to investigate new, scalable, approaches
to prototyping. The successful prototyping tool must be
highly productive and allow descriptive representations of
an algorithm both of which are met by todays use of Mat-
lab. A future prototyping tool must however be much faster
than Matlab, it must have a better single core performance,
and it must be able to run on multicores, accelerators, and
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cluster-computeres alike in order to satisfy the requirement
of doing prototyping at the petaflops-scale in order to re-
duce the distance to state-of-the-art exaflops machines to
three orders of magnitude, as it is today.

In the following, we introduce the Bohrium just-in-time com-
piler which, combined with the Numerical Python library
NumPy[5], may provide a solution to next-generation-proto-
typing. Bohrium is not developed for prototyping, but rather
for rapid solutions on parallel hardware, but non the less it
matches the requirements that we believe are essential for
prototyping in for the exascale.

2. THE BOHRIUM RUNTIME SYSTEM
The open-source project Bohrium1 is a runtime system for
high-performance high-productivity development[4, 3]. Bohr-
ium provides the mechanics to couple an array-programming
language or library with an architecture-specific implemen-
tation seamlessly.

Bohrium consists of a number of components that commu-
nicate by exchanging a hardware agnostic array bytecode.
Components can be architecture-specific but they are all in-
terchangeable since all uses the same bytecode and commu-
nication protocol. This design makes it possible to com-
bine components in a setup that match a specific execu-
tion environment without changing the original user appli-
cation. Bohrium consist of the following three component
types (Fig. 2):

Bridge The role of the Bridge is to integrate Bohrium into
existing languages and libraries. The Bridge generates
array bytecode that corresponds to the user-code.

Vector Engine Manager (VEM) The role of the VEM
is to manage data location and ownership of arrays.
It also manages the distribution of computing jobs be-
tween potentially several Vector Engines and thus mul-
tiple processors.

Vector Engine (VE) The VE is the architecture-specific
implementation that executes array bytecode.

When using the Bohrium framework, at least one implemen-
tation of each component type must be available. However,
the exact component setup depends on the runtime system
and what hardware to utilize, e.g. executing NumPy on a
single machine using the CPU would require a Bridge imple-
mentation for NumPy, a VEM implementation for a machine
node, and a VE implementation for a CPU. Now, in order to
utilize a GPU instead, we can exchange the CPU-VE with
a GPU-VE without having to change a single line of code
in the NumPy application. This is a key feature of Bohr-
ium: the ability to change the execution hardware without
changing the user application.

2.1 Configuration
To make Bohrium as flexible a framework as possible, Bohr-
ium manage the setup of all the components at runtime
through a configuration file. The idea is that the user or

1Available at http://www.bh107.org.

Python
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C
Bridge

Vector Engine Manager

New language
Bridge

CPU
Vector Engine

GPGPU
Vector Engine

Cluster
Vector Engine 

Manager

CPU
Vector Engine

GPGPU
Vector Engine

FPGA
Vector Engine

Figure 2: Component Overview

system administrator can specify the hardware setup of the
system through an configuration file (Fig. 3). Thus, it is
just a matter of editing the configuration file when changing
or moving to a new hardware setup and there is no need to
change the user applications.

2.2 Vector Bytecode
A vital part of Bohrium is the array bytecode that consti-
tutes the link between the high-level user language and the
low-level execution engine. The bytecode is designed with
the declarative array-programming model in mind where the
bytecode instructions operate on input and output arrays.
To avoid excessive memory copying, the arrays can also be
shaped into multi-dimensional arrays. These reshaped array
views are then not necessarily comprised of elements that are
contiguous in memory. Each dimension comprises a stride
and size, such that any regularly shaped subset of the un-
derlying data can be accessed. We have chosen to focus on a
simple, yet flexible, data structure that allows us to express
any regularly distributed arrays. Figure 4 shows how the
shape is implemented and how the data is projected.

The aim is to have an array bytecode that support data
parallelism implicitly and thus makes it easy for the bridge
to translate the user language into the bytecode efficiently.
Additionally, the design enables the VE to exploit data par-
allelism through SIMD2 and the VEM through SPMD3.

2.3 Bridge
The Bridge component is the bridge between the program-
ming interface. In order to interface with the frontend lan-
guage, the language-specific bridge component translates ar-
ray operations into Bohrium array bytecode lazily. That
is, the bridge collects array operations until it encounter
a language condition, in which case it sends the collected

2Single Instruction, Multiple Data
3Single Program, Multiple Data
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# Bridge for NumPy
[numpy]
type = bridge
children = node

# Vector Engine Manager for a single machine
[node]
type = vem
impl = libbh_vem_node.so
children = gpu

# Vector Engine for a GPU
[gpu]
type = ve
impl = lbbh_ve_gpu.so

Figure 3: This example configuration provides a
setup for utilizing a GPU on one machine by in-
structing the Vector Engine Manager to use the
GPU Vector Engine implemented in the shared li-
brary lbhvb_ve_gpu.so.
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Figure 4: Descriptor for n-dimensional array and
corresponding interpretation

1 import numpy as np
2
3 def solve(height, width, epsilon=0.005):
4 grid = np.zeros((height+2,width+2),np.float64)
5 grid [:,0] = -273.15
6 grid [:,-1] = -273.15
7 grid [-1,:] = -273.15
8 grid [0,:] = 40.0
9 center = grid [1:-1,1:-1]

10 north = grid [:-2,1:-1]
11 south = grid [2:,1:-1]
12 east = grid [1:-1,:-2]
13 west = grid [1:-1,2:]
14 delta = epsilon+1
15 while delta > epsilon:
16 tmp = 0.2∗(center+north+south+east+west)
17 delta = np.sum(np.abs(tmp-center))
18 center[:] = tmp

Figure 5: Python implementation of a heat equation
solve that uses the finite-difference method to calcu-
late the heat diffusion. Note that in order to utilize
Bohrium, we use the command line argument “-m”,
e.g. “python -m npbackend heat2d.py”

operations to the underlaying Bohrium components. Con-
sequently, Bohrium only handles a subset of the frontend
language – namely the array operations. The frontend lan-
guage handles all non-deterministic aspect of program, such
as conditional branches and loops, by itself.

An example of a Bohrium bridge is the Python/NumPy-
bridge that seamlessly integrates with NumPy. The bridge
is a drop-in replacement of NumPy thus without changing a
single line of code, it is possible to utilize Bohrium (Fig. 5).

2.4 Vector Engine Manager
In order to utilize scalable architectures fully, distributed
memory parallelism is mandatory. The Cluster component
in Bohrium is currently quite näıve; it uses the bulk-syn-
chronous parallel model[6] with static data decomposition
and no communication latency hiding. We know from pre-
vious work than such optimizations are possible[2].

Bohrium implements all communication through the MPI-
2 library and use a process hierarchy that consists of one
master-process and multiple worker-processes. The master-
process executes a regular Bohrium setup with the Bridge,
Cluster-VEM, Node-VEM, and VE. The worker-processes,
on the other hand, execute the same setup but without the
Bridge and thus without the user applications. Instead,
the master-process will broadcast array bytecode and array
meta-data to the worker-processes throughout the execution
of the user application.

Bohrium use a data-centric approach where a static decom-
position dictates the data distribution between the MPI-
processes. Because of this static data decomposition, all
processes have full knowledge of the data distribution and
need not exchange data location meta-data. Furthermore,
the task of computing array operations is also statically
distributed which means that any process can calculate lo-
cally what needs to be sent, received, and computed. Meta-
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data communication is only needed when broadcasting ar-
ray bytecode and creating new arrays – a task that has an
asymptotic complexity of O(log2 n), where n is the number
of nodes.

2.5 Vector Engine
The Vector Engine (VE) is the only component type that
actually performs array operations. Bohrium implements
two VEs, the CPU-VE and GPU-VE, that utilizes multi-
core CPUs and GPGPUs respectively. Through the use of
Just-In-Time (JIT) compilation, both VEs compiles the ar-
ray bytecode received from the Node-VEM into architecture
specific binary kernels. In order to utilize multi-core CPUs,
the CPU-VE feeds the JIT-compiler with OpenMP anno-
tated ANSI C source code whereas the GPU-VE generates
OpenCL source code in order to utilize GPGPUs from both
Nvidia and AMD.

3. BENCHMARKS
In order to evaluate the performance of Bohrium, we will
perform a series of benchmarks that compares Bohrium against
Python/NumPy. For each benchmark, we report the mean
of five execution runs all within 10% deviation from the
mean. We use 64-bit double floating-point precision for all
calculations and all speedup results are strong scaling where
the data size is fixed. The benchmarks consist of the follow-
ing four applications:

Black Scholes The Black-Scholes pricing model is a par-
tial differential equation, which is used in finance for
calculating price variations over time[1]. This imple-
mentation uses a Monte Carlo simulation to calculate
the Black-Scholes pricing model.

Heat Equation simulates the heat transfer on a surface
represented by a two-dimensional grid, implemented
using jacobi-iteration with numerical convergence (Fig.
5).

N-Body Nice The Nice variation of the newtonian n-body
simulation is used to model larger galaxies with a large
number of asteroids. The mass of the asteroids is small
enough that their gravitational pull is insignificant.
Thus, only the force of the planets are applied to the
asteroids. The planets exchange forces similar to a
regular n-body simulation.

Shallow Water simulates a system governed by the Shal-
low Water equations. The simulation commences by
placing a drop of water in a still container. The simu-
lation then proceeds, in discrete time-steps, simulating
the water movement. The implementation is a port of
the MATLAB application by Burkardt4.

Multi-Core Processor
Figure 6 shows that results of running the four applications
on 32 CPU-cores (Table 1). Beside comparing Bohrium ver-
sus Python/NumPy, the results of the Heat Equation in-
cludes two handwritten parallel implementations – one in
ANSI-C and one in C++11 – both using OpenMP. The re-
sults clearly shows that the CPU-VE of Bohrium achieve a

4http://people.sc.fsu.edu/˜jburkardt/m src/shallow water 2d/

Processor: AMD Opteron 6272
Clock: 2.1 GHz
Cores: 32
L3 Cache: 16MB
Memory: 128GB DDR3
Compiler: GCC 4.6.3
Network: Gigabit Ethernet
Software: Linux 3.13, Python 2.7, NumPy 1.8.2

Table 1: Multi-Core Processor Specification

�

�

��

��

��

��

��

��

��

��

��

���	


��
�	���


�����


�������

������


����

�������


��	��

 

�����
!

 ""

Figure 6: Relative speedup utilizing 32-cores com-
pared to a sequential Python/NumPy execution.

significant performance boost compared to Python/NumPy
and is even competitive to handwritten compiled C/C++
code.

GPGPU
Figure 7 shows that results of running the four applications
on a GPGPU (Table 2). Compared to the multi-processor,
the GPGPU takes the performance boost even further. No-
ticeable is the Black Scholes results with more than 300
times speedup compared to Python/NumPy.

Cluster
Figure 8 shows that results of running the four applications
on an eight-node cluster where each node is the multi-code
processor from Table 1 connected through Gigabit Ether-

Processor: Intel Core i7-3770
Clock: 3.4 GHz
Cores: 4
L3 Cache: 16MB
Memory: 128GB DDR3
Compiler: GCC 4.6.3
Network: Gigabit Ethernet

GPGPU: AMD HD 7970
Clock: 1000 MHz
Memory: 3GB GDDR5
-bandwidth: 288 GB/s
Software: Linux 3.13, Python 2.7, NumPy 1.8.2,

OpenCL 2.1

Table 2: GPGPU Specification
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Figure 7: Relative speedup utilizing GPGPU com-
pared to a sequential Python/NumPy execution.
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Figure 8: Relative scalability on an eight-node clus-
ter. We compared the utilization of one node (32-
cores) against the utilization of eight node (256-
cores).

net. We run a MPI-process per cluster node and use the
CPU-VE benchmark (here, we use an older version of the
CPU-VE implementation than the one previously used) in
Bohrium to utilize the 32-cores on each node. In order to
show scalability, we compare 32-cores executions with 256-
cores executions. The scalability goes from 50% to 95%
speedup utilization.

4. CONCLUSIONS
In this work we have shown how Python/Numpy in com-
bination with the Bohrium just-in-time compiler, offers an
attractive work-to-performance ratio. While better perfor-
mance can be had from expert implementations, a Python/
Numpy implementation is fully on-par with other high-pro-
ducitivity languages with respect to the the effort the scien-
tist has to put in, and the performance is on-par, or close
to, that of an straight forward C++ implementation. The
end result is that a scientist may move seamlessly from a

laptop version of a code to a large, heterogeneous, parallel
machine, without any changes to the code. In fact, we will
show that the scientist can continue to work from a laptop,
with interactive graphics if needed, while the contracted ar-
ray operations are all executed on a remote machine, includ-
ing supercomputers, granted that the scientist is willing to
wait online for the job to be scheduled at the SC site. The
descriptive approach not only makes scientists more pro-
ductive, but also reduces the number of errors as no explicit
parallelism is expressed, and synchronization requirements
are fully derived from the descriptive implementation of the
algorithm.
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ABSTRACT
Several trends in HPC systems make it challenging to quickly
and easily develop applications that perform well. One im-
portant trend is an increased number of levels in HPC sys-
tems: more levels of memory and interconnect, more levels
of parallelism (SIMD, multi-threading, multi-core,... ). A
second trend, caused by the first is an explosion of software
solutions to exploit all these levels.

This paper is about how ExaSHARK - a library for han-
dling n-dimensional distributed arrays - combined with the
GASPI PGAS language aims to reduce the increasing pro-
gramming burden while still providing good performance.
ExaSHARK offers its users a global array like usability while
its underlying runtime builds on GASPI to take optimal ad-
vantage of the PGAS paradigm.

We will present first result and challenges on using GASPI
as the main underlying programming model for ExaSHARK.
These result show that by using ExaSHARK the application
can take advantage of the PGAS library without having to
know it is underneath (code portability). On the other hand
it is clear that to get good performance, we need to change
the application’s and ExaSHARK’s communication patterns
to better exploit the asynchronous nature of GASPI (no per-
formance portability).

Keywords
Regular Grids, Communication libraries, ExaScale, Software
for communication optimization, PGAS, GPI, MPI

1. INTRODUCTION
High Performance Computing (HPC) architectures are ex-
pected to change dramatically in the next decade with the
arrival of exascale computing, high performance computers
that offer 1 exaFlop (1015) of performance. Because of power
and cooling constraints, large increases in individual core
performance are not possible and as a result on-chip paral-
lelism is increasing rapidly. The expected hardware for an
exascale machine node will therefore need to rely on massive

parallelism both on-chip and off-chip, with a complex dis-
tributed hierarchy of resources [6]. Programming a machine
of such scale and complexity will be very hard unless some
appropriate, workable layers of abstraction are introduced to
bridge the gap between problem specification and efficient
code at the cluster, node and chip levels.

Exascale machines will be mainly necessary for scientific
and industrial simulations where scientists try to understand
more complex phenomena by using simulations that run at
ever higher resolutions and on ever longer time scales. One
of the primary data structures in many of these scientific
simulations is a regular multidimensional array. Indeed, a
number of simulations can be modeled as time-discrete evo-
lution on structured multidimensional array. Regular arrays
are also at the core of many numerical algorithms.

In this paper we describe how to combine ExaSHARK, a
library for handling n-dimensional distributed arrays, with
the GASPI PGAS language to reduce the increasing pro-
gramming burden while still providing good performance.
ExaSHARK offers its users a global array like usability while
its underlying runtime builds on GASPI to take optimal ad-
vantage of the PGAS paradigm. Next to GASPI, ExaS-
HARK can be configured to also include any of the afore-
mentioned programming models.

The structure of this paper is as follows. Section 2 presents
the ExaSHARK and GASPI libraries. Section 3 shows first
results on ExaSHARK+GASPI and Section 4 are the con-
clusions.

2. EXASHARK AND GASPI
As this paper is about combining ExaSHARK and GASPI,
this section aims to describe both libraries in more details,
as well as the work undertaken to integrate them.

2.1 ExaSHARK
ExaSHARK is an open source middleware [3], offered as
a library, targeted at reducing the increasing programming
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burden on heterogeneous current and future exascale archi-
tectures. ExaSHARK handles matrices that are physically
distributed block-wise, either regularly or as the Cartesian
product of irregular distributions on each axis. The access
to the global array is performed through a logical indexing.
The programmer can define halos/ghost regions in the global
array.

Our major architectural drivers for a scalable structured
grid-based library are efficiency, portability and ease of cod-
ing. ExaSHARK is portable since it is built upon widely
used technologies such as MPI and C++ as a programming
language. It provides simple coding via a global-arrays-like
interface which offers template-based functions (dot prod-
ucts, matrix multiplications, unary expressions). The func-
tionalities offered by ExaSHARK are efficient since they use
asynchronous and specific communication patterns.

The main properties of ExaSHARK are:

• Data distribution ExaSHARK is based on the PGAS
parallel programming model which is convenient for
expressing algorithms with large and random data ac-
cess. Each process is assumed to have fast access to a
portion of each distributed matrix, and slower access
to the remainder.

• Communication layer ExaSHARK supports a plethora
of lower level programming models and libraries with
the aim of being adequate to exascale systems which
are highly heterogeneous. Application developers may
use pure MPI and/or hybrid MPI + OpenMP threads
to target coarse and medium-grained parallelism.

• Expression templates over global arrays ExaS-
HARK offers many high-level functions traditionally
associated with arrays, eliminating the need for pro-
grammers to write these functions themselves. Ex-
amples are basic mathematical operators, unary func-
tions, standard global arrays operations such as dot
products and matrix vector multiplication,and so on.
These functionalities are implemented using expression
templates [9].

• Inter-operability and interfacing with external
software ExaSHARK can interface with external li-
braries when needed by the user’s application. For ex-
ample, developers can use the functionality of the In-
tel’s Math Kernel Library (MKL) for optimized math
routines [5] or PETSc (Portable, Extensible Toolkit
for Scientific Computation) [1] for advanced numerical
methods for partial differential equations and sparse
matrix computations.

2.2 GASPI
The Global Address Space Programming Interface (GASPI
[4]) is the specification for a PGAS style programming model
for C/C++ and Fortran. The API consists of a set of basic
routines. Its communication layer can take full advantage
of the hardware capabilities to utilize remote direct memory
access (RDMA) for spending no CPU cycles on communica-
tion.

The GASPI API provides one-sided communication calls
and at its core consists of no more than there functions:

• gaspi write Schedules the write of a block of local
data to a remote memory.

• gaspi notify Sends a notification to a remote node.
While GASPI is very asynchronous, the notification is
guaranteed to arrive at the remote side, after all the
writes to that node have been completed.

• gaspi wait notify Waits for a notification and hence
for the reads preceding this notification.

While GASPI has more functions for ease of programming,
these three are the main functions that are needed by any
program. The GASPI library has been optimized to work
in a multi-threaded environment and is interoperable with
MPI. The latter means a single application can use MPI for
parts of its communication and GASPI for other parts.

Several popular proto-type applications and benchmarks have
been implemented with GASPI and for these GASPI shows
excellent scaling properties [8, 7].

2.3 ExaSHARK + GASPI
This section outlines how the communication layer of ExaS-
HARK can be ported to use GASPI. A first implementation
of ExaSHARK on GASPI has been done, i.e. all functional-
ity is there and we currently have a working but non-optimal
version of Shark using GASPI.

The porting consists of replacing calls to MPI in the com-
munication primitives of ExaSHARK with GASPI calls.

The effort depends on how compatible GASPI is with re-
spect to the ExaSHARK functionality and varies depending
on the functionality being ported. We list the different de-
grees below to serve as lessons learnt:

• Trivial: Some aspects can be trivially translated from
MPI to GASPI. For example: An MPI Win allocate is
translated to a gaspi segment create

• Easier: Some aspects are easier to do in GASPI than
in MPI. For example: The concept of notifications in
GASPI makes the handling of asynchronous commu-
nication much easier than with MPI.

• Minimal Thinking: Aspects that GASPI handles in
a different way require some thinking to implement.
For example: GASPI does not have vector data-types.
It only communicates flat data. This means that in
cases a sub-array is communicated this happens in
MPI by use of an hvector data-type, which can contain
blocks with stride. In GASPI the individual contigu-
ous blocks have to be communicated individually.

• Significant Effort: MPI is feature-rich and some
parts in ExaSHARK are easy to express in MPI but re-
quire significant effort in GASPI. The underlying rea-
son is that GASPI is intentionally kept simpler than
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MPI. For example: GASPI does not support remote
accumulation because this would require additional bu↵er-
ing at the remote site, which does not scale well.

• Problematic: GASPI is still young compared to MPI
and some use-cases are not yet well supported. One
use-case is the use of GASPI in a library (in this case
ExaSHARK). For example: GASPI uses integers to
identify memory segments. It is non-trivial to make
sure these identifies do not overlap between di↵erent
libraries using GASPI in the same user application.

The next section presents first results obtained from the new
ExaSHARK+GASPI library.

3. EXPERIMENTS AND RESULTS
As first experiment we choose to evaluate the scaling of Ex-
aSHARK+GASPI on a simple 2D Jacobi heat [2] stencil
application in an ExaScale environment. ExaScale systems
will likely have many more cores but the system memory
size will not scale as much [6]. For grid-based applications,
such as the ones ExaSHARK support, this will lead to fewer
grid points per core, and thus much more boundary points.

The graph in Figure 1 shows strong scaling results for the
heat application on a 1024⇥ 1024 size grid. The X-axis lists
the number of nodes and number of threads per node, the
Y-axis the speedup relative to two nodes. Four implemen-
tations of the 2D heat application are compared:

• nocomm: a functionally incorrect communication-free
implementation;

• gpi: ExaSHARK+GASPI with one GASPI process
per node and one OpenMP process per core;

• mpi+openmp: ExaSHARK with one MPI process
per node one OpenMP process per core;

• mpi+ppn: ExaSHARK with one MPI process per
core.

The results clearly show the above example does not scale.
Several potential reasons have been identified.

• ExaSHARK+GASPI uses a bulk synchronous commu-
nication scheme. Significant overhead is due to syn-
chronization and load imbalance.

• In ExaSHARK+GASPI the communication functions
are not multi-threaded, while the application itself is.
Due to Amdahl’s law the time spent in communication
layer increases with the number of threads.

• The 2D heat application is memory-bandwidth bound.
It contains relatively little computations that can be
overlapped with communications.
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Figure 1: Strong scaling for a 2D heat application

on a 1024 ⇥ 1024 size grid. Speedup vs. number of

nodes and cores for four versions.

4. CONCLUSIONS
While ExaSHARK is a modern and high-level library with
support for multiple programming paradigms and natural
syntax (thank to c++), while ExaSHARK performs reason-
ably well at node-level, there is much room for improvement
to make it scale well. Two ideas for improvement are:

• Make ExaSHARK thread-safe to be able to do multi-
threaded communication.

• Support for much more fine-grained synchronization to
scale to modern many-core systems.

More specifically for the ExaSHARK and GASPI combina-
tion, we can see that both GASPI itself and the GASPI+Exa-
SHARK combination are still young and much improve-
ments in the coding and the library are possible. One exam-
ple of this is to use ExaSHARK+MPI for the communication
patterns of ExaSHARK where this is more suited, and use
ExaSHARK+GASPI for those parts where asynchronicity
and performance are more needed.
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ABSTRACT
The exponential increase of components in modern High
Performance Computing (HPC) systems poses a challenge
on their resilience: predictions of time between failures on
ExaScale systems range from hours to minutes, yet the preva-
lent HPC programming model today does not tolerate faults.
In this paper, we describe the design and prototype imple-
mentation of transparent resilience support for Chapel [1], a
parallel HPC language with focus on scalability, portability
and productivity, following the Partitioned Global Address
Space (PGAS) [2] programming model.

Keywords
Resilience, Fault tolerance, PGAS, Chapel, Runtime sys-
tems

1. INTRODUCTION
The use of manycore commodity hardware in a hierarchi-
cal structure on modern HPC systems, gives rise to rapidly
deteriorating Mean Time Between Failures (MTBF) [3, 4]
rates. This leads HPC systems to waste capacity on re-
launching entire executions after failures. Many real world
applications, from molecular dynamics to simulation algo-
rithms take anywhere from a few hours to days to complete.
Over this time horizon, failures can no longer be ignored
on ExaScale architectures. Resilience [5] is the ability of a
system to maintain state awareness and an accepted level of
operational normalcy in response to disturbances, including
threats of an unexpected and malicious nature. We address
cases of failure, in particular hardware failure of one or mul-
tiple nodes, during execution on a distributed setup. Our
goal is for Chapel programs to terminate successfully in the
presence of failures.

In this work we embed support for resilience into Chapel’s
runtime system (RTS) using detection and recovery mech-
anisms together with automatic task adoption. Our goal
is to provide transparent built-in resilience to the end user
(Chapel programmer), without the requirement of extra pro-
gramming effort. Our design employs data redundancy, re-
taining information about exported work and a dedicated
resilience communication protocol to recover from failures.
This design provides flexibility and scalability on a small set
of assumptions, following similar design principles to Re-
silient X10’s Place-Zero Based Finish [6]. Resilient task
parallelism support is enhanced by employing non-blocking
communication and by enabling asynchronous recovery of
failed tasks on non-failed locations/nodes in the system.

2. CHAPEL OVERVIEW
Computation in Chapel is expressed using tasks that can be
executed in parallel. The target architecture is abstracted
via the concept of locales: a unit with storage and execution
capabilities, such as a multi-core processor. A multi-locale
program starts execution on Locale 0 and scales out to other
locales, building the locale tree. Below, we provide a brief
overview on aspects of relevance to the support for resilience.

2.1 Language Constructs
The on construct is the main language mechanism for task
migration, used by the Chapel programmer to explicitly con-
trol locality of the executed task. The migrated task is a
logical continuation of the initial task at a different place in
the system. The body of an on block is viewed as a single
blocking task by the controlling thread of the parent locale.

The three language constructs that create parallel tasks are
begin, cobegin and coforall statements. Unstructured
parallelism introduced by begin creates a new task, for ex-
ecution on a new thread, while the rest of the program con-
tinues. The result of the begin statement is returned at
a later point in the execution. Completion is tracked either
by an enclosing explicit synchronisation block or the implicit
synchronisation of the main function.

With the block-structured task creation employed by cobe-

gin a new task is created for each statement in the block,
while coforall, cobegin’s equivalent in loop form, creates
one task per iteration. For cobegin and coforall, there
exists an implicit synchronisation point at the end of the
block/loop, while the tasks are launched asynchronously.
The control flow returns when all tasks have reached the
synchronisation point and the program continues.

2.2 Runtime Structure
Chapel’s runtime system (RTS) is the lower level of the soft-
ware stack, supporting language constructs and program ac-
tivities. The runtime is composed of a set of layers, written
in C, and standardised interfaces, written in Chapel, and
relies on third-party services (Figure 1). The main layers
are: communication, tasking, threading and memory.

2.3 The GASNet Communication Layer
Chapel uses GASNet [7] as the default instantiation of the
communication layer. GASNet is a network- and language-
independent interface for Global Address Space languages.
It is portable and supports multiple low-level communication
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Figure 1: Chapel’s Runtime Structure

conduits (e.g UDP, MPI). The Active Messages (AM ) [8]
interface, used on top of the conduits, is formulated as log-
ically paired request and reply operations. Most GASNet
core functions will return zero on success or an error code.
If any node of a GASNet job crashes, aborts, or suffers a
fatal hardware error, GASNet attempts to terminate the re-
maining nodes in a timely manner to prevent creation of
orphaned processes.

2.4 Internal Synchronisation Constructs
Tasks are added to task lists for execution and all threads
dispatched for the list’s parallel scope can be rescheduled
and reused.

c l a s s EndCount {
var i : atomic int ,
taskCnt : taskCntType ,
t a s kL i s t : t a s k l i s t = nu l lTa skL i s t ;

}
Listing 1: The endCount class

Internally, Chapel uses endCount objects (Listing 1) to track
the completion of parallel tasks. An endCount is allocated
at the beginning of each synchronised block and its atomic
counter is increased before launching a new task. A reference
to the endCount is passed to the wrapper of each task and
the counter is decremented on completion. The controlling
thread of the block waits on completion of the task(s) (i = 0)
and frees the corresponding endCount. The main function
itself is governed by an endCount object.

3. DESIGN OUTLINE
System failures may occur due to hardware fault, software
crash or communication loss. We generalise the concept of
node failure as anything that prevents a node from commu-
nicating with other nodes in the system. In the context of
Chapel, using the flat locale model (one locale per node),
we realise node failures as locale failures.

Parallelism and locality are orthogonal in Chapel: the con-
structs discussed in Section 2.1 can be arbitrarily combined.
Scale-out task parallelism is expressed as combination of
on constructs (blocking fork operation) and task parallel
constructs (begin, cobegin, coforall), resulting in non-
blocking fork operations. Our design focuses on the RTS,
particularly on the communication layer and the internal
modules. We examine task migration, expressed both with
blocking and non-blocking fork operations.

With our support for resilience in the RTS, we aim for detec-
tion and possible recovery from failures. Our design objec-
tive is to allow programs to complete execution in the pres-
ence of failures. We make use of data redundancy techniques

(Section 4.2), identifying the appropriate data to store and
a resilient storage (internal to the RTS) for this purpose.

Assumptions. We base our design on the following set of
assumptions:

• Locale 0 is failure free and acts as resilient storage for
redundancy and data retrieval;

• resilience is only supported during execution of the
user’s code; we argue that errors during initialisation
cannot lead to a fault-free execution and we consider
such errors fatal;

• a failing locale explicitly notifies of its failure and the
delivery of these notifications is guaranteed; we plan
to modify this behaviour in the future with the use of
an out-of-band signalling mechanism;

• the body of a task on a failing locale needs to execute
till completion or not execute at all; due to the diffi-
culty of tracking and shutting down tasks on the lower
layers (tasking and threading);

• we require that the communication network does not
fail or that any such failures lead to fatal errors

4. IMPLEMENTATION
4.1 System Specification
For our implementation we use Chapel’s version 1.9.0 built
with gasnet (v1.22.0); flat locale model; fifo tasks over POSIX
threads; default memory (standard C malloc commands)
and intrinsics. We use the GNU compiler suite (gcc v4.4.7)
and the amudprun launcher on a 64-bit Linux platform.

4.2 Data Structures
We implement three new data structures for storing the sta-
tus of locales and the task descriptors of migrated tasks.

failed_table: We implement an array of length equal to
the number of locales in the configuration (numLocales).
The array is stored on Locale 0 and records failures detected
during execution. We store tuples of node id’s and status
variables (failed_t struct). The array is updated on recep-
tion of a FAIL (or TIMEOUTNB) signal from remote locales or
on local detection of a failure.

transit_msg_list and transit_arg_list: We introduce
two linked lists to capture the descriptors of migrated tasks
and we store context information (functions and data) for
each remote task in the execution. Data redundancy is
employed for use in task relaunching, in the occurrence of
failure. The lists are stored on Locale 0 and are updated
through the handlers of IN_TRANSIT and IN_TRANSIT_DEL

signals. The main operations on the lists are append, delete
and (currently) linear-time lookup. We aim to replace the
linked lists by a hash table with fixed lookup overhead in
future work.
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4.3 Communication Protocol
Remote fork operations are implemented using the on con-
struct, which is realised as switching to a different (from the
current) locale to execute a task. The on construct belongs
primarily to the communication layer, but the tasking layer
plays a subsidiary role to support the acknowledgement-
based system.

The communication layer handles the transfer of the task
(and data) to and from the remote location while the child
locale launches the body of the on statement by calling the
chpl_task_startMovedTask() function of the tasking layer.
The target locale runs a synthetic task; calls the body of the
on statement and on return it sets a flag on the initiating
locale. The control on the parent locale waits on this flag
before proceeding.

Listing 2 demonstrates a distributed serial program, using
a blocking fork while Listing 3 demonstrates a distributed
parallel program, using a non-blocking fork operation. Fork
operations are also used during initialisation of multi-locale
executions to establish communication between Locale 0 and
all other locales in the configuration (e.g broadcasting of
global variables, GASNet initialisation).

wr i t e l n ( here . id ) ; // l o c a l e 0
on Loca l e s [ 1 ] do

wr i t e l n ( here . id ) ; // l o c a l e 1
wr i t e l n ( here . id ) ; // l o c a l e 0

Listing 2: Distributed serial Chapel program

begin on Loca l e s [ 1 ] do
wr i t e l n ( here . id ) ; // l o c a l e 1

on Loca l e s [ 2 ] do begin
wr i t e l n ( here . id ) ; // l o c a l e 2

wr i t e l n ( here . id ) ; // l o c a l e 0

Listing 3: Distributed parallel Chapel program

Blocking Fork. Figure 2a demonstrates the functionality
of the blocking fork function (chpl_comm_fork()), called
on the parent locale. A wrapper (fork_t), capturing the
function and arguments, is sent for remote execution via a
FORK signal. On the child locale, the signal is handled in the
AM_fork() handler, which schedules the task for local execu-
tion and replies with SIGNAL (acknowledgement). The signal
is received on the parent and the locale exits the block-wait.

In Figure 2b we demonstrate the resilient version of the func-
tion1. We add a TIMEOUT signal (Figure 2b, Message 4b) for
the child locale to notify the parent of local failure. Due
to the asynchronous nature of the UDP protocol, we choose
not to use a heart-beat function in order to avoid possible
overheads. Furthermore, we add a UNIX signal handler to
track status changes of the locales. On receipt of the TIME-

OUT signal, the parent notifies Locale 0 (FAIL, Figure 2b,
Message 5b) to record the newly detected failure.

In order to make use of the status information, available on
Locale 0, the parent requests an update on the child’s status

1The implementation is available for downloading at http:
//www.macs.hw.ac.uk/~kp167/resilience/

before launching the fork operation. This is a proactive de-
tection mechanism to help save extra communication, since
the child locale may have been detected dead in a previous
operation. We handle the exchange of information between
the parent and Locale 0 using FAIL_UPDATE_REQUEST/REPLY

signals (Figure 2b, Messages 1 & 2).

In both cases, recovery is handled on the parent locale by
executing the task wrapper. The motivation behind this
design is the availability of the evaluation context (function
and arguments) on the parent locale. Failure of the parent
locale, is handled on its immediate living ancestor (as a child
failure) one level higher on the locale tree.

Non-Blocking Fork. In the non-blocking fork operation
(Figure 2c) the parent locale launches the remote fork op-
eration and exits without waiting for an acknowledgement.
Instead, the endCounts mechanism (Section 2.4) is employed
to track completion of the remote task(s).

Figure 2d demonstrates the non-blocking fork operation with
the modifications to support resilience. Here we use the two
linked lists introduced in Section 4.2. We use the first list,
transit_msg_list, to capture the core part of the task de-
scriptor with information on the parent and child locale and
the function ID, while the second list, transit_arg_list, is
used to store the variable-sized arguments of the task.

The parent sents the context to Locale 0 before launching the
non-blocking fork operation (IN_TRANSIT, Figure 2d, Mes-
sage 1). The arguments are copied using memcpy; an expen-
sive but essential operation in order to retrieve data safely
since it is unsafe to use pointers to the local memory of a
locale that may fail (parent locale). The memory is freed on
execution of the task, on reception of the IN_TRANSIT_DEL

(Figure 2d, Message 3a) signal from the child locale or lo-
cally, if recovery took place.

In the resilient version, in the occurrence of failure, the fail-
ing locale notifies Locale 0 (Figure 2d, Message 3b). In turn,
Locale 0 employs mechanisms to reconstruct the task from
its in-transit lists; it then records the failure of the child in
its local array and re-executes (recovers) the task.

The motivation for employing recovery on Locale 0 is based
on the non-blocking nature of the operation. In contrast to
the blocking case, the parent has possibly completed the fork
operation by the time detection of the failure occurs. As a
result, all memory references of the context of the remote
task have been discarded. Furthermore, storing information
on the parent locale would be unsafe as the parent is also
susceptible to failures and it could lead to permanent loss of
the essential information to relaunch the lost task.

For load balancing purposes we may choose to re-execute the
task either on a new thread on Locale 0 or re-launch the task
in a non-blocking manner on a remote locale (possibly the
parent locale), known to be alive. Our current implementa-
tion adopts the first strategy, to avoid creating more commu-
nication and data copying, resulting by a new non-blocking
fork operation (see Implementation Limitations, Section 7).
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fork function

FORK
task_counter++
wait on task_counter==0

AM_fork

fork_wrapper

   execute task body
   SIGNAL
   

parent locale locale 0 child locale 

AM_signal
task_counter--

 

(a) Blocking Fork Interface

failed_table
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          status

AM_fail_update_request
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wait update_done

FORK_NB

task_counter++
wait task_counter==0 or  
                           timeout
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   FAIL
   execute task body
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   TIMEOUT
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(b) Resilient Blocking Fork Interface

nb fork function

FORK_NB AM_fork_nb

fork_nb_wrapper
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allocate endCount
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wait counter==0 counter--

(c) Non-Blocking Fork Interface
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             counter --
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(d) Resilient Non-Blocking Fork Interface

Figure 2: Resilient Communication Protocol: Design Overview of Blocking and Non-Blocking Fork Operations

5. RESULTS
5.1 Testing Framework
Our testing framework is signal-based to flexibly simulate
locale failures and assess functionality of the prototype im-
plementation. We use the following two testing modes: all,
simulating failure of every locale except Locale 0 (stress test)
and rand, simulating failure of a random number of locales.
We assess both functionality and overhead of our prototype
implementation, while a current limitation is the inability of
the framework to simulate failures at different times during
execution and the requirement to allow a short time frame
in the beginning of the execution to send the signals.

Our experiments were performed on a 32-node Beowulf clus-
ter (256 cores) connected via Gigabit ethernet network, with
each node consisting of: two quad-core Xeon E5506 2.13GHz,
12GB of main memory and three-layered cache memory topol-
ogy. For our tests, we performed 30 iterations.

5.2 Functionality Tests
Figure 3 demonstrates functionality of the resilient blocking
fork implementation using the constructed programs, shown
in Table 1, below. We use the Monte Carlo Pi approximation
as the remote long-running task and we run experiments
with all and rand modes. We get the expected success

rates of 100% on both testing modes confirming functional-
ity, when excluding the failures of the testing framework.

Failures of the testing framework are marked as missed (Fig-
ure 3). When launching a Chapel program, usually the first
node on the hostlist acts as Locale 0, but this is not spec-
ified beforehand. These cases, reaching 30%, are the result
of simulating failure on Locale 0. Complying to our assump-
tion that Locale 0 is failure-free, these signals are discarded.

5.3 Overhead
In Figure 4, we demonstrate the overhead of our resilient
blocking fork implementation on the constructed programs
of Table 1. We use the regular (non-resilient) Chapel imple-
mentation without failures as baseline and we note overheads
between 0.29% and 1.29% for our resilient implementation
without failures. This overhead is due to the additional com-
munication and management of the added data structures.
The overhead rates on failure (all, rand) depend highly on
the structure of the locale-tree (e.g. shallow/deep nesting).

6. RELATED WORK
In the context of PGAS languages, Resilient X10 [6] is a
complete implementation of X10 with added support for re-
silience. It uses distributed termination detection mecha-
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simpleons.chpl simpleontest.chpl

on Loca l e s [ 1 ] do
monteCarlo ( ) ;

on Loca l e s [ 2 ] do
monteCarlo ( ) ;

on Loca l e s [ 1 ] do {
monteCarlo ( ) ;
on Loca l e s [ 2 ] do

monteCarlo ( ) ;
}

three on.chpl two two.chpl

on Loca l e s [ 1 ] do {
monteCarlo ( ) ;
on Loca l e s [ 2 ] do{

monteCarlo ( ) ;
on Loca l e s [ 3 ] do

monteCarlo ( ) ;
}

}

on Loca l e s [ 1 ] do {
monteCarlo ( ) ;
on Loca l e s [ 2 ] do

monteCarlo ( ) ;
}
on Loca l e s [ 3 ] do{

monteCarlo ( ) ;
on Loca l e s [ 2 ] do

monteCarlo ( ) ;
}

back.chpl

on Loca l e s [ 1 ] do {
monteCarlo ( ) ;
on Loca l e s [ 2 ] do{

monteCarlo ( ) ;
on Loca l e s [ 1 ] do

monteCarlo ( ) ;
}

}

Table 1: Constructed Programs: used for functionality and
overhead testing

Figure 3: Resilient Blocking Fork - Functionality Tests

nisms, currently supported for the sockets implementation
of the communication layer. Resilient X10 uses, in the lat-
est version, X10-level resilient storage with data redundancy
on multiple nodes, allowing fatal errors when all the nodes
that store copies fail. This introduces extra communication
costs but also allows performance tuning by controlling the
manner that data is stored.

Erlang [9], is a declarative language with built-in resilience,
applying a scheme of relaxed fault tolerance and following
the “let it fail” design pattern where recovery is only em-

Figure 4: Resilient Blocking Fork - Overhead

ployed where possible with the use of process links, moni-
tors and supervisor tasks. Furthermore, Spark [10] employs
resilient distributed datasets (RDD’s); a read-only, memory-
persistent collection of objects partitioned across machines
that can be rebuilt. Spark expands on the work of MapRe-
duce [11] and Dryad [12] in the direction of acyclic data
flows, supporting applications that reuse data across multi-
ple operations.

Finally, we identify significant research on technical aspects,
such as efficient data-redundancy and message logging [13],
fault tolerance for work-stealing computations [14] and dis-
tributed termination detection mechanisms [15].

7. CONCLUSIONS
We have presented the design and initial implementation of
basic resilience support embedded in Chapel’s runtime sys-
tem. Our design is completely transparent, using automatic
task adoption and data redundancy techniques based on a
small set of realistic assumptions.

Our preliminary results focus on functionality of the block-
ing fork operation with 100% success rates, indicating nor-
mal program termination and compliance with the task adop-
tion strategy. The implementation also succeeds in cases of
deeply nested fork operations; though this is not a common
pattern in Chapel programs. Our results on constructed
programs show negligible overhead in the failure-free case,
mainly induced by communication and data structures’ man-
agement.

The implementation of the non-blocking fork operation is
currently work in progress, as we explore alternatives to the
existing termination detection mechanism for parallel tasks.
The most promising direction is Parental Responsibility Ter-
mination Detection as described in [15].

Design Limitations. For applications with strict perfor-
mance requirements, our strategy of strict resilience may be
unsuitable compared to a relaxed resilience scheme where a
system could trigger graceful exit on reaching the threshold
of parallelism or runtime.
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Implementation Limitations. We identify fixed-length vul-
nerability windows between the reception of the FORK signal
on the child locale and the call of the wrapper function, in-
cluding copying of the computation’s context. To address
this issue we aim to embed local status monitors to the
communication task on each locale; exploiting the existing
dedicated thread used for AM polling.

Currently, we do not provide functionality and overhead re-
sults for the case of the non-blocking fork. The resilient non-
blocking fork implementation, as described in Section 4.3, is
functional concerning execution of recovered tasks but fails
to track completion on recovery. The main reason is that
termination detection is implemented on module level and
is controlled by the compiler and not on RTS level.

Ongoing work explores the ideas presented in [15], concern-
ing integration of termination detection mechanisms on the
RTS level (communication protocol) for the resilient ver-
sion of the non-blocking fork operations. This system adds
the requirement for asynchronous acknowledgements for all
messages (migrated tasks) and assumes failures of parent-
children locales as unrecoverable. We also explore alterna-
tive solutions, such as adding hooks to the compiler gener-
ated code or exploring the memory to identify and copy the
corresponding endCount objects.

Finally, we do not currently handle user-level distributed
data structures. While this will be an important topic to
address in the future, here we focus on the backbone of the
resilient functionality.

Future Work. In future work, we will address advanced dis-
tributed task adoption strategies and the integration of re-
silience with Chapel’s default data distributions. We expect
that this will require a load balancing policy, to tackle the
issue of task recovery occurring closer to the root of the
locales tree, with increasing failure numbers.

Finally, we aim to explore further the idea of evolving sys-
tems [16], enabling “resurrection” of nodes after failure or
allowing new nodes to join at later points in the execution,
provided that the nodes have been configured as part of the
communicable segment during initialisation.
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protocol for multicore systems,” in Dependable
Systems and Networks Workshops (DSN-W), 2012
IEEE/IFIP 42nd International Conference on,
pp. 1–6, IEEE, 2012.

[14] W. Ma and S. Krishnamoorthy, “Data-driven Fault
Tolerance for Work Stealing Computations,” in
Proceedings of the 26th ACM International Conference
on Supercomputing, ICS ’12, 2012.

[15] J. Lifflander, P. Miller, and L. Kale, “Adoption
Protocols for Fanout-Optimal Fault-Tolerant
Termination Detection,” in ACM SIGPLAN Notices,
vol. 48, pp. 13–22, ACM, 2013.

[16] G. R. R. Justo and P. R. F. Cunha, “An architectural
application framework for evolving distributed
systems,” Journal of systems architecture, vol. 45,
no. 15, pp. 1375–1384, 1999.

Proceedings of the 3rd International Conference on Exascale Applications and Software 91

Towards Resilient Chapel Panagiotopoulou & Loidl



HPC and CFD in the Marine Industry: Past, Present and 
Future

Kurt Mizzi 
University of Strathclyde, 

100 Montrose Street, 
Glasgow 

+44 (0)141 548 4911 
kurt.mizzi@uni.strath.ac.uk 
 
 

Paula Kellett 
University of Strathclyde, 

100 Montrose Street, 
Glasgow 

+44 (0)141 548 3237 
paula.kellett@strath.ac.uk                                                                                                                                                                          

 
 
 

Yigit K. Demirel 
University of Strathclyde, 

100 Montrose Street, 
Glasgow 

+44 (0)141 548 4275 
yigit.demirel@strath.ac.uk 

 
 

Richard Martin 
University of Strathclyde, 

107 Rottenrow East, 
Glasgow 

+44 (0)141 548 3265 
richard.martin@strath.ac.uk 

 
 

Osman Turan  
University of Strathclyde, 

100 Montrose Street, 
Glasgow 

+44 (0)141 548 3211 
o.turan@strath.ac.uk 

ABSTRACT 
This paper explores the use of Computational Fluid Dynamics 
(CFD) applications on High Performance Computing (HPC) 
platforms from the perspective of a user engaged in Naval 
Architecture research. The paper will consider the significant 
limitations which were imposed on research boundaries prior to 
present HPC capabilities, how this impacted development in the 
field and the implications for industry. One particular example is 
the costly experimental testing which, due to resource constraints, 
is generally restricted to model scale. It will then present an 
overview of the numerical simulation capabilities using current 
HPC performance and capability. 

With the increase of computational power and capacity, CFD 
simulations are proving to be more accurate and reliable. Being 
relatively cheaper and more time efficient, numerical methods are 
becoming the preferred choice within the industry compared to 
traditional experimental tests. Nevertheless, certain experimental 
procedures cannot be numerically replicated with the current 
levels of computational capacity.  

The future needs and challenges of research and development will 
be outlined and discussed, highlighting the significant impact 
exascale computing will have in the field.  

Keywords 
Computational Fluid Dynamics (CFD), HPC Application, HPC 
Capability, Capacity Implications 

1.   INTRODUCTION 
The aim of this paper is to provide an understanding of the 
importance of  HPC and its contribution to research development 
in the area of marine research. Several examples of research fields 
which are extremely important in the marine sector, both 
academically and also crucially for the industry, will be used to 
further these discussions. More specifically, the ability to directly 
simulate ship resistance, the effects of fouling on ship 
performance, and underwater noise predictions at model and full 
scale will be discussed. HPC capabilities that allow the use of 
CFD as an optimization tool, with the example of Propeller Boss 
Cap Fin (PBCF) designs, will also be outlined.  

Although High Performance Computing has come a long way, 
current HPC power still limits certain analyses and research, even 
though some of the current capability would never have been 
thought to be possible even a few years ago. A typical example 
would be propeller cavitation which is best predicted using a 
Detached Eddy Simulation (DES) solver that requires high 
computational capability.  This indicates that computational 
capability dictates research boundaries as well as processes, which 

can be significant in an industry which tends to be conservative 
and reactive.   

Although maximising HPC capabilities broadens the horizons for 
research and analysis, one common problem is convincing 
industry to rely on numerical simulations. Although these 
methods may be beneficial financially, while enabling the 
generation of high levels of useful data, quality assurance of the 
product is always a prime concern and therefore such new 
procedures need to be well proven and presented. This paper will 
also discuss earning the trust of industry because ultimately it is 
industry that drives and funds research in this sector, enabling it to 
progress.  

2.   CFD AND ITS IMPORTANCE IN 
NAVAL ARCHITECTURE 
Generally, during the initial stages of current ship design 
processes, various design analyses are carried out using numerical 
approaches typically known as CFD methods. Before CFD 
procedures were available, all investigations were carried out 
experimentally in facilities, such as the one shown in Figure 1, 
which were very time consuming and expensive and which 
therefore constrained research to the analysis of a limited number 
of designs. Apart from the complexity of involving a number of 
stakeholders in experiments, they also incorporate a number of 
assumptions, errors and tolerances, the most common being the 
issue of scaling. All experimental studies are carried out at model 
scale, introducing scaling errors in the extrapolation of the results 
to full scale. The ability to simulate at full scale is very important 
as it removes the errors and correction factors associated with 
model scale testing due to scaling effects, and in cases where 
improvements in the range of 2-3% are being sought, it is very 
beneficial to have the sources of error minimised as far as 
possible. These errors arise due to the fact that the viscous effects 
of water cannot be scaled, and will therefore be the same at both 
model and full scale. 

CFD technology is capable of predicting various parameters such 
as resistance, motion, free surface capturing, manoeuvring 
performance etc. some of which is very hard to predict in 
experimental procedures due to the need for instantaneous 
visualization or sophisticated measurement tools. 

However, as previously explained, the industry still considers 
experimental investigation to be more reliable. Therefore, to save 
on costs, the design process is initially carried out using 
simulation based design (CFD) analyses followed by experimental 
studies at the final stages for validation.   
High fidelity CFD tools have enhanced research, pushing 
boundaries in all aspects of the marine industry. For this reason, 
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researchers should focus on developing and improving next 
generation simulation based design in order to open new horizons 
and opportunities in marine research. This can generally be 
achieved by improving the numerical solvers as well as 
maximising HPC capabilities.    
 

 
Figure 1. Experimental Tests 

3.   PAST AND PRESENT 
COMPUTATIONAL LIMITS 
In the very early stages of the application of CFD to Naval 
Architecture problems, limited computational power and capacity 
restricted most analyses to potential flow methods. Typically, 
these methods did not take into account the viscous effects of the 
fluid which resulted in a loss of accuracy and an over 
simplification of the problem.  

Therefore, the use of more simplified approaches was common 
and this in turn meant that the capture of complex flow 
phenomena was much more difficult. In time, with the advance in 
computational power, Reynolds-Averaged Navier-Stokes (RANS) 
equations based CFD simulations became more feasible allowing 
the use of more complex and representative turbulence models. 
These simulations were time consuming and computationally 
expensive thus constraining the cell count for meshes to the extent 
that only model scale could be simulated, which produced similar 
errors to those observed in experimental results. This also 
prevented detailed representation of the geometry and proper 
physical predictions. In addition, simulations took longer to 
converge, resulting in the fact that analytical and parametric 
studies were limited and optimization procedures were not really 
an option. Full scale simulations are still not as common as model 
scale and when they are applied, certain methods and approaches 
are typically used (such as mesh refinement regions) to limit the 
overall size of the mesh and computational domain.  

Recent improvements have also led to the introduction of Large 
Eddy Simulation (LES) and Direct Eddy Simulation (DES) 
methods which are less common again, but can provide more 
accurate results through the application of fewer assumptions in 
certain cases. These kinds of simulation are required for 
applications such as cavitation, which is discussed later, however 
they remain time consuming and computationally expensive in 
comparison to RANS approaches. One promising approach is to 
blend both the RANS and DES models to produce a compromise 
between accuracy and execution time.      

With the advance towards Exascale Computing, more advanced 
numerical methods may be introduced. There will likely be a 
move towards Direct Numerical Simulation (DNS) approaches, 
where the use of assumptions to simplify the problem are 
removed, making the results yet more accurate but significantly 
increasing the calculations that need to be carried out at each time-
step.  

A comprehensive discussion on the recent advances in CFD, and 
potential future trends and developments, is presented in [1]. 

4.   CURRENT STATE OF THE ART 
The following sections will present the current state of the art in 
CFD using three case studies from industry-relevant naval 
architecture problems. 

4.1   Naval Architecture Case Studies 
The examples discussed in this section outline topics in naval 
architecture which have been addressed at University of 
Strathclyde using current CFD capabilities, particularly the 
commercial Star-CCM+ software. Their advances over past 
capability as well as their limitations will be highlighted. 

4.1.1   Ship Resistance and Fouling 
Shipping has been, and still is, one of the most important methods 
of transport, with more reliance and importance now being placed 
on this mode of transport as a consequence of advancements in 
shipping technology and the ability of ships to hold and store 
increasing capacities of goods. However, these improvements and 
features bring some problems to the industry due to an increase in 
fuel consumption, which is detrimental to the environment and 
which erodes company revenues. Although other forms of fuel 
power exist, such as wind energy and solar power, carbon-based 
fuel is currently the only way for ships to run effectively. For this 
reason, minimising fuel consumption is crucial for shipping 
companies. 
 

 
Figure 2.  Fouling Analyses Motive 

A major challenge is to relate technologies, such as antifouling 
coatings and the effect of biofouling, to ship resistance and fuel 
consumption, in order to evaluate their effects on energy 
efficiency and hence CO2 emissions (see Figure 2). While 
retrofitting existing ships with new antifouling paints will improve 
their energy efficiency, it is equally important to accurately model 
the potential effects of biofouling on ship resistance and to 
demonstrate the importance of the mitigation of such effects 
through scientific research. 

Two different CFD models were therefore proposed as outlined in 
[2] and [3] for the prediction of the roughness effects of 
antifouling coatings and biofouling on ship resistance. It is worth 
pointing out that the total number of cells of such CFD 
simulations is very high since the roughness of the hull surface 
requires to be represented in the order of micrometers (µm). 
Additionally, the time-step used in such simulations has to be kept 
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very small due to the very complex and unstable nature of the 
phenomenon. The capability of the computer system is therefore 
of great importance for researchers and engineers to be able to 
carry out reliable and feasible CFD analyses. 

The effect of the total cell numbers on the results of such analyses 
are highlighted in the following table. For each mesh 
configuration, the frictional resistance coefficients (CF) of a flat 
plate of ship length, coated with an antifouling coating are listed 
in Table 1 [2].  

Table 1: CF results of antifouling coatings at different mesh 
configurations [2]. 

Mesh configuration Total No. of Cells CF (CFD) 

Coarse 1.8 x106 0.001574 

Medium 2.5 x106 0.001576 

Fine 4 x106 0.001584 

Very Fine 5.5 x106 0.001584 
 

From Table 1 it is evident that the results converged very well 
provided that the total numbers of cells are sufficiently high. Such 
simulations could not have been run without the existence of High 
Performance Computers. 

It is significant that the modelling used in these simulations was 
based on available experimental data and was achieved using 
particular assumptions on the flow properties. Although the 
proposed CFD model is a reasonable method to predict these 
effects, the effects of biofouling on ship resistance can only be 
precisely predicted using a means of geometrical modelling of 
relevant organisms. Unfortunately, geometrical modelling of such 
small organisms in detail, along with the other complexities of the 
ships’ systems such as a rotating propeller, is beyond the scope of 
current HPC capability. Additionally, spatial inhomogeneity of 
fouling on ship hulls is another challenge for modelling which is 
still beyond the reach current computational capabilities.   

4.1.2   Ship Radiated Underwater Noise 
A topic which has recently become important in the marine 
industry is underwater noise from anthropogenic noise sources, in 
particular shipping, and its impact on marine wildlife. As outlined 
in [4], CFD has been used to predict the underwater noise of a 
moving ship and rotating propeller at given locations. In the past, 
simulations would not have allowed for a rotating propeller to be 
modelled. This meant that a steady state approximation was 
therefore applied to an unsteady problem. However, these kinds of 
simulations are now feasible, as in Figure 3, and have been carried 
out at full scale, with the benefit of removing the additional errors 
associated with scaling. However, given the limits of current 
computational capability, the vessel had to be simulated moving 
in calm and very deep water, with the propeller operating in a 
non-cavitating condition. Therefore, propeller noise and flow 
noise could be captured but the significant contribution to 
underwater noise from cavitation could not be addressed in this 
case. 

Cavitation is the phenomenon whereby the water at the propeller 
effectively boils due to the pressure differential cause by the 
rotation of the propeller above a certain speed. Almost all 
propellers will cavitate at certain operational conditions. This 
phenomenon is of considerable concern in the marine industry as 

it leads to reduced propeller efficiency, high levels of underwater 
noise, and in more extreme cases, damage to the propeller and 
hull. An example of a cavitating propeller can be seen in Figure 4 
below. With current CFD capabilities, the higher complexity 
solvers and the fine computational meshes required for 
simulations of cavitation only allow them to be carried out at 
model scale, and generally with only partial hull geometry and a 
calm water surface represented. The significant additional 
demands in simulating this phenomenon in more realistic 
conditions are beyond current computational capability. 

 
Figure 3. Rotating Propeller Simulation 

 
Figure 4. Propeller Cavitation [1] 

4.1.3   Propeller Boss Cap Fins Optimisation  
As outlined above, there are various methods available to improve 
the propulsion efficiency of a vessel. With recent development in 
CFD procedures and HPC capability, designs with improved 
propulsion efficiency can be achieved by carrying out hull, 
propeller and retrofit device design optimisation procedures. In 
particular, one well established retrofit technology is the Propeller 
Boss Cap Fin (PBCF), which is a post swirl fin that is installed 
onto the boss cap of the propeller as demonstrated in Figure 7. 

 
Due to the limitation of available tools, previous research was 
typically conducted by analysing different PBCF design 
parameters independently and seeking the local optimum by 
assessing different case studies. However, research was recently 
carried out seeking to optimise the PBCF design in order to find 
the global optimum by taking into consideration a number of 
related parameters [5]. This was made possible by the available 
capacity of ARCHIE-WeSt, the High Performance Computer at 
University of Strathclyde, and use of the available software 
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namely Star-CCM+ (the numerical CFD solver) and Friendship-
Framework as an optimiser. These advanced numerical tools 
together with a large-scale computational resource allowed the 
analysis of 120 different PBCF designs with the optimal fin 
producing an open water efficiency improvement of 1.3%, which 
is very significant in this field. Results for the open water 
efficiency for the different designs can be seen in Figure 5 below. 
Similar methodology and approaches can be applied to different 
energy saving devices or case studies to suit different 
requirements. 
 

 
Figure 5. PBCF Optimisation Study 

 
However, optimisation options and procedures are endless, for 
example, defining one or more constraints or seeking a single or 
multi-objective approach. Processes might also be 
computationally expensive and time consuming and therefore 
careful selection of a robust and efficient system must be taken 
into consideration. A common preferred approach is to run 
various designs with a less demanding numerical model, followed 
by further optimisation on selected designs using more accurate 
simulations. This demonstrates that optimisation procedures could 
be further exploited with the development of appropriate tools and 
resources. With increasing computer capacity, future 
enhancements could be extended by adding more design variables 
or, for example, a multi-objective optimisation approach could be 
used to seek a ship geometry providing maximum energy 
efficiency and reduction in hub vortex cavitation. Additionally it 
is conceivable that more detailed analyses could be carried out 
which might result in different optimal fin geometries altogether 
(Figure 6). 

A particular limitation of these studies is the lack of a suitable 
cavitation model in the numerical simulation which would require 
more advanced modelling, numerical approaches and greater 
computational power. Since cavitation adversely affects propeller 
characteristics, more effort will be focused on implementing a 
cavitation model in the open water simulation. 
The use of automation in the optimization procedure reduces time 
and user interaction which can be considered as a benefit, 
however it also provides less control for the user and requires 
constant monitoring for quality assurance purposes. Nevertheless, 
it saves a great deal of time allowing the extensive study of a 
system or technology within a limited time scale. 

 
Figure 6. Hub Vortex Cavitation 

 
Figure 7. PBCF 

 

5.   FUTURE POSSIBILITIES 
As has been outlined in the sections above, the advances that have 
already taken place in computational capability and capacity have 
enabled much more complex and realistic simulations to be 
carried out. This has resulted in more accurate predictions in much 
shorter timescales. Logically this then implies that further 
increases in computing capability to exascale and even beyond 
will extend the possibilities for researchers and industry to further 
improve the simulation of real world problems. Access to much 
greater capability will allow for the use of larger and more refined 
meshes within CFD simulations, which in turn leads to more 
accurate solutions of problems. Increased capacity will also allow 
for increasingly complex scenarios to be solved, as they will 
enable more parameters to be calculated directly rather than being 
assumed or simplified.  

A good example of this is the subject of ship propeller cavitation, 
as discussed in Section 4.1.2 and 4.1.3. At present simulation of 
the phenomenon is typically only carried out at model scale and 
with only part of the ship’s hull present in order to try to reduce 
computational complexity wherever possible. However the 
availability of much higher levels of computational capability 
would mean that simulations could be carried out in much more 
realistic conditions with a full scale propeller and full hull present, 
and operating in a seaway which is representative of an actual sea 
state. Such simulations would enable researchers, and more 
crucially industry, to gain a much better understanding of the 
phenomenon and its implications for real operational conditions in 
order to take more informed decisions on how to address it. 

Further advances could also be directed towards using LES 
numerical models for cavitation, simulating cavities and eddies. 
Although it is found to be more accurate for certain engineering 
applications, LES is not currently very common as it is very 
computationally expensive.  
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Although optimization methods are available, their use is not 
common practice due to the computational capacity required. Hull 
and propeller optimization using RANS simulations would greatly 
benefit the industry allowing the analyses of multiple designs at a 
reasonable expense when compared to experimental procedures. 
Looking further into the future there is likely to be a venture into 
optimization methods in real operational conditions and 
optimization using LES or DNS numerical models.  

As explained above, the increase of computational power, both in 
terms of capability and capacity, introduces endless possibilities to 
the marine industry and research in general.   

However looking at short term improvements, the ability to create 
mesh configurations with higher cell numbers would increase 
accuracy, allow more full scale simulations and would make it 
easier for engineers to satisfy the validation and verification 
requirements (V&V) of their simulations which in turn would 
create increased credibility for their work and generate more trust 
from within industry.    

One other significant improvement would be to allow more 
interaction between the HPC and the user i.e. creating a better 
graphical user interface allowing for interactive simulations. Some 
CFD engineers find it best to monitor their work while the job is 
running ensuring that the simulation is running adequately, and 
sometimes also making modifications during the run. This is 
commonly practiced when carrying out minor jobs on a personal 
computer. However, when running jobs on a HPC, although some 
visual elements are allowed, this is somewhat limited. Extending 
and expanding visual capabilities in HPC would definitely help 
engineers carry out their work more efficiently.   

However in the present economic climate, researchers and 
industry are not at liberty to research and develop whichever 
techniques and capabilities they choose over an undefined 
timescale. Nor would access to such computational capability be 
granted for free. The following sections will discuss the 
implications of access to such capability from the perspective of 
research and of industry. 

5.1   Technical Implications 
Stern et al. outlined three HPC challenges in state of the art CFD 
simulations; System Memory, Interconnection and Input/output 
[6]. They explain that 10% of the current system memory (RAM), 
which is generally 2GB, is dedicated for system usage. In high 
fidelity complex simulations, a good portion of this is used to 
store the data to be solved, leaving limited memory for the solver. 
In some cases, marine applications require the processing of vast 
amounts of data which do not fit within a single computer node, 
which may generally be equipped with tens of processor cores. 
Future advances, such as Exascale computers, may allow 
transition from a multi–core to many-core systems equipped with 
many more cores on a single node. Therefore the continuous 
increase of number of processors within one node will allow more 
complex simulations with higher volumes of data to be solved 
within a single shared-memory system. On the other hand, due to 
the associated costs, a decrease in memory size per core is 
predicted and therefore it is vital for the CFD engineer to 
minimise memory usage in CFD simulations and processes.  

The interconnection between the nodes is also an issue that 
requires attention. The network bandwidth and communication 
latency are the determining factors for network interconnect 
performance. Therefore while computer engineers are likely to 
focus on avoiding or reducing latency and increasing network 

bandwidth, flow simulation engineers should develop solvers that 
require less communication. In addition, high fidelity flow 
simulations require processes to read and write vast amounts of 
data which may result in a great number of nodes or cores to 
processing in parallel the input/output data. This might make data 
handling unmanageable and will also be affected by interconnect 
bandwidth and the performance of the available storage.  
Consequently, this could deteriorate simulation performance and 
could be costly.  

Such issues require attention not only from the computer 
engineering perspective but also from the software developers 
with the former aiming to maximise HPC capability and the latter 
minimising the need for high data volumes, handling and 
communication. Together they should aim to improve the system 
performance and the scalability of the simulations.    

5.2   Implications for Research 
The direction that research takes is as much dictated by political 
agendas, funding sources and industry requirements as it is by 
computational capability. Political agendas tend to dictate “hot 
topics” which are perceived to be of upmost importance to society 
at a given juncture. This in turn influences the funding which 
becomes available for research or facilities which support 
development in these key areas. These developments can then 
have an impact in two ways: by producing new techniques or 
technologies which become available to industry, or through 
highlighting concerns which impact on industry where they lead 
to standards and regulations. The process then comes full circle as 
industry turns to the research community, seeking support in 
dealing with these new discoveries.  

In the particular case of significant advancements in 
computational capability to Exascale Computing, access to such 
facilities and the funds to develop applications to take advantage 
of them would not necessarily be directly linked to the 
advancements themselves. Instead, it would most likely arise as a 
means of improving current knowledge and understanding of a 
key politically-supported topic, or investigating a particular 
concern raised by industry. This in effect means that just because 
the capability becomes available, the required developments in 
CFD and hence the advantages and possibilities outlined within 
this paper would not necessarily follow directly. For this reason, it 
is of great importance to all parties that key developments and 
their possible implications in other fields gain suitable publicity 
and are appreciated by as wide an audience as possible.  

5.3   Implications for Industry 
The marine industry has typically been conservative and reactive, 
meaning that new developments and techniques are not 
immediately trusted. Even the current state of the art capability in 
CFD simulation is not widely trusted, and where the results are 
accepted, they inevitably need to be well supported by costly 
experimental testing results. Due to the perceived complexity of 
CFD, where it is not understood, it is not trusted. It is therefore of 
vital importance that where the capability for sophisticated 
simulations is available, all possible steps are taken to ensure that 
the processes are transparent, well validated and can prove to 
provide accurate and high quality results. Validation and 
verification (V&V) procedures, e.g. [7] and [8], is a research topic 
in its own right, with engineers constantly improving the quality 
of CFD results with continuous developments in tools and 
computational power leading to new CFD methods. 
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If this can be achieved and if trust can be developed in the use of 
these approaches, the benefits for industry would be significant. 
As has already been outlined, model scale experimental tests are 
limited in what can be recreated and are also subject to inherent 
scaling errors. Carrying out such tests is time-consuming and 
costly, and any design changes would require a new model to be 
built and a new set of experiments to be run. By contrast, future 
CFD simulations could be run at full scale, removing any inherent 
scaling errors. As computational capacity increases, the timescales 
and costs involved will continue to reduce.  Therefore, design 
changes could be made and analysed more easily, and simulations 
of realistic scenarios could be conducted. This latter advantage 
would have a significant benefit in terms of ship safety and, in 
what is probably more appealing to industry, efficiency. Improved 
efficiency means a lower fuel bill and the ability to predict the 
efficiency of a vessel in a range of realistic operational conditions 
rather than at just one design condition. This will lead to more 
informed decisions on design and installation, producing vessels 
that are much better adapted to their typical operating profile than 
at present. 

The challenges which lie ahead for the industry in arriving at this 
point are significant, with many aspects to consider, but if it can 
be achieved, the benefits will be universal in the field. 

6.   CLOSING REMARKS 
Numerical solvers have developed significantly over the past few 
years. This has allowed marine, and more specifically ship 
hydrodynamics, research to progress in parallel. The continuous 
improvement of HPC capabilities and the move towards Exascale 
Computing will allow research methods to be exploited even 
further, opening up new possibilities previously not possible due 
to the constraints of the available computing capabilities. With 
this in mind, numerical solvers should be further developed taking 
into consideration the power and capacity of Exascale Computing 
platforms that will open up new windows of opportunity. In time 
this will result in more robust, accurate, scaleable, high fidelity, 
state of the art simulations, even when employing optimization 
procedures. 
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ABSTRACT
Simulations of galaxy formation follow the gravitational and
hydrodynamical interactions between gas, stars and dark
matter through cosmic time. The huge dynamic range of
such calculations severely limits strong scaling behaviour of
the community codes in use, with load-imbalance, cache inef-
ficiencies and poor vectorisation limiting performance. The
new swift code exploits task-based parallelism designed for
many-core compute nodes interacting via MPI using asyn-
chronous communication to improve speed and scaling. A
graph-based domain decomposition schedules interdependent
tasks over available resources. Strong scaling tests on real-
istic particle distributions yield excellent parallel efficiency,
and efficient cache usage provides a large speedup compared
to current codes even on a single core. swift is designed
to be easy to use by shielding the astronomer from com-
putational details such as the construction of the tasks or
MPI communication. The techniques and algorithms used
in swift may benefit other computational physics areas as
well, for example that of compressible hydrodynamics. For
details of this open-source project, see www.swiftsim.com

Keywords
Task-based parallelism, Asynchronous data transfer

1. INTRODUCTION
The main aim of cosmological simulations of the formation
of structures in the Universe is to understand which physi-
cal processes play in role in how galaxies form and evolve.
For example, what determines whether a galaxy becomes a
spiral or an elliptical? What is the origin of the morphology-
density relation - the observation that elliptical galaxies clus-
ter much more strongly than spirals? What sets the colours
of galaxies? How does the rate of galaxy formation evolve
over cosmic time? What is the nature of high-redshift galax-
ies? A better understanding of these processes will be re-
quired to take full advantage of the rich data sets being

collected now, or promised by future observatories such as
the James Webb space telescope1, ESO’s Extremely-Large
telescope 2 or the Square Kilometre Array 3.

Such cosmological simulations start from initial conditions
motivated by observations of the cosmic microwave back-
ground (CMB). The CMB provides a directly observable
imprint of the small density fluctuations that will eventu-
ally grow due to gravity into galaxies and clusters of galaxies
today. In an expanding universe, regions which are slightly
over-dense become denser and eventually collapse due to the
self-gravity of their dark matter. These collapsing ‘halos’
accrete gas that cools radiatively and makes stars. The sim-
ulations follow the build-up of the dark matter halos and
the accretion, shock-heating, and radiative cooling of the
gas onto halos.

The gas densities above which stars form are orders of mag-
nitude higher than the typical density in a galaxy and this
large dynamic range is one of the most challenging aspects
of these computations. The radiation and winds of recently
formed stars, and the energy injected by super nova ex-
plosions, strongly limit the rate at which a galaxy’s gas is
turned into stars. As a result, only ∼ 17 per cent of all gas
in the Universe has been converted into stars to date [3].
The tremendous dynamic range in mass, length and time,
between gas accreting onto a halo and turning into stars pre-
vents simulations to model these crucial processes in detail.
‘Subgrid’ schemes are therefore used to model processes that
cannot (yet) be resolved numerically, not unlike what is done
in other multi-scale calculations such as for example weather
or climate modelling. Limiting the impact of these subgrid
models by actually resolving some of the underlying physics
is a tremendously exciting and computationally demanding

1http://www.jwst.nasa.gov/
2http://www.eso.org/public/teles-instr/e-elt/
3https://www.skatelescope.org/
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challenge for the exascale era.

Current cosmological simulations often take months to run
on hundreds to many thousands of cores. For example the
recent EAGLE simulation [11] took 45 days to run on 4000
cores of the Durham Data Centric Cluster, part of the DIRAC
infrastructure4, and the simulation suite used nearly 40M
core hours on the curie machine using a prace5 allocation
of computer time. Such long run times are currently limiting
scientific progress.

This paper discusses the swift code that is designed to over-
come some of the limitations of community codes widely
used in cosmology, in particular improving load-balance,
cache-usage, and vectorisation. It also intends to shield
the astronomer who intends to implement and test subgrid
schemes from the underlying computational details.

2. COSMOLOGICAL GAS DYNAMICS
This section provides a brief overview of the equations being
integrated. Calculations are performed in co-moving coordi-
nates x say for position, related to physical coordinates r by
the time-dependent scale factor a(t), r = ax (see for exam-
ple [10]), but we will ignoring these details here. Perform-
ing these calculations using a Lagrangian scheme where the
fluid is represented by a set of particles that move with the
fluid’s speed is very advantageous, because the flow speeds
are very large due to the large (gravitational) motions of
forming galaxies.

Smoothed particle hydrodynamics (SPH, [4, 9]) is such a
Langrangian scheme in which values for fluid variables are
interpolated from a disordered particle distribution using
kernel interpolation. For example the density ρ and pressure
gradient∇p at the location ri of particle i are computed with
equations of the form

ρ(ri) =
∑
j

mj W (
|ri − rj|
hi

) , (1)

∇p(ri) =
∑

mj

(
p(ri)

ρ(ri)2
+

p(rj)

ρ(rj)2

)
∇W (

|ri − rj|
hi

)(2)

where mj is the mass of particle j and W is a bell-shaped
kernel with compact support, W (q) = 0 for q > 1. The
smoothing length hi is computed such that a given weighted
number of particles contributes to the sum. The pressure is
found from the density and temperature using an equation
of state. Note that we need to evaluate the density for each
particle before we can compute the pressure gradient. Sev-
eral variations of Eq. (2) exist, we use this particular form
here to illustrate the type of sums to be computed, swift
implements the more accurate version used in gadget 2
[12].

Gravitational accelerations are calculated as,

ai = −G
∑
j 6=i

mj

|ri − rj|3
(ri − rj) , (3)

with extra terms (not discussed here) to represent periodic

4http://www.stfc.ac.uk/1263.aspx
5http://www.prace-ri.eu/

Figure 1: Illustration of neighbour finding on a
mesh. Five tasks are indicated, numbers 1-3 com-
pute densities from pairs of particles in cells 1-3,
whereas tasks 4 and 5 compute densities between
particles pairs in neighbouring cells.

images such that the simulated volume is periodically repli-
cated (the Ewald summation familiar from solid state physics).

Given the initial state of the system, specified by position
and velocities of all particles, particles are marched forward
in time using velocities to update positions and accelerations
to update velocities. Most of the calculation time is spent
in evaluating the hydrodynamical and gravitational forces.
The popular gadget [12] and gasoline [13] codes use a
tree to find neighbours for evaluating the sum in Eqs. (1-2).
These codes split the gravitational force from Eq. (3) into
a contribution from nearby particles evaluated using a tree
following [1], and contribution from distant particles evalu-
ated using a mesh, as in the P3M scheme described in detail
in [7], see [2] for the application in cosmology. The parti-
cles are distributed over the computational volume using a
space-filling curve to attempt to preserve locality which re-
duces MPI communication needed if neighbour particles are
not held on the same MPI task. Such ‘domain decomposi-
tion’ also takes significant compute time. How these issues
are handled in swift is described next.

3. TASK-BASED CALCULATIONS
3.1 SPH
Swift identifies potential neighbours by organising particles
in cubic cells as illustrated in Fig.1 (drawn in 1 dimension
for simplicity). By choosing the cell size of the mesh to be
larger than the smoothing length h of all particles in that cell
guarantees that particles within hi of the fat blue particle in
the figure can be found either in the same cell (blue, labelled
‘2’), or in one of the two neighbouring cells (black and green,
labelled ‘1’ and ‘3’ respectively). Given the large dynamic
range in h, such a mesh needs to be adaptive. The density
calculation of Eq. (1) for particle i now involves three steps:
find neighbours of i in each of the three cells (in the figure,
these are particles within the red circle with radius hi).

In Swift, each of these calculations is executed by separate
tasks. In the simple case illustrated in Fig.1 there are two
types: tasks that involve evaluating Eq. (1) for pairs of par-
ticles in the same cell (labelled 1-3), and tasks that involve
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Figure 2: Execution of the 5 tasks (labelled 1-5) il-
lustrated in Fig.1, by two threads (labelled 1 and 2
and coloured red and blue, respectively) with con-
flicts. Thread 1 starts executing task 1, while thread
2 executes task 5, locking tasks 2, 3 and 4. When
thread 2 completes task 5, it immediately starts ex-
ecuting task 3. Thread 1 can execute task 2 locking
task 4 when task 1 is completed. However thread 2
cannot start executing task 4 as long as task 2 is not
completed, since tasks 2 and 4 conflict.

Figure 3: Task time-line for swift SPH calculation,
running on 8 nodes (thick bands) with 12 cores (thin
bands) each. Different colours corresponds to differ-
ent tasks, for example red refers to communication.
As the calculation progresses, each core is executing
tasks mostly independent of other cores, with little
idle time lost due to MPI synchronisation at the end
of the time step.

evaluating Eq. (1) for pairs of particles in neighbouring cells
(labelled 4 and 5). To avoid race conditions, some tasks
cannot be performed simultaneously, in this particular case
tasks 4 and 5 conflict with each other, 4 conflicts with 1
and 2, and 5 with 2 and 3 . The task scheduling in swift
therefore should be able to handle both conflicts and depen-
dencies.

How these 5 tasks could be executed by two threads is illus-
trated in Fig. 2. At the start, threads pick tasks indepen-
dently, locking those tasks that conflict with them. In this
example, thread 1 executes task 1, and thread 2 executes
task 5 (locking tasks 2 and 3). When thread 2 completes
task 5 it unlocks tasks 2 and 3, and starts executing task 3
(locking task 4). When task 3 is finished, thread 2 is idle
because the remaining task 4 conflicts with task 2 being ex-
ecuted by thread 1. One of the threads (in the illustration
thread 1) finishes off the work.

The efficiency of the tasks themselves can be improved by
sorting [6, 5]. Indeed, consider again the fat blue particle i in
Fig.1 when task 5 is executed. If we were to sweep through
the green particles in cell 3 from left to right, we would find
that the fourth green particle no longer contributes to the
density since it is outside the red circle. There is therefore
no reason to even check if any of the other green particles is
inside the red circle, since these are even further away from
particle i in the horizontal direction.

The swift SPH implementation contains several similar ‘ker-
nels’ that calculate the interaction between two particles (for
example individual terms in Eq. (1) or in Eq (2)). Expos-
ing these basic routine to the user greatly simplifies adapt-
ing the code to the user’s wishes, for example in making
changes to the basic SPH algorithm. This kernel is called for
a range of particles that are in the same cell. Cache-misses
are minimised by making sure these particles are nearly con-
tiguous in memory. Bunching particles in cells is then also
advantages for vectorising, either using intrinsics, or by us-
ing pragma’s that allow the compiler to known that these
calculations can be vectorised.

With sorting tasks, density tasks, and pressure gradients
tasks (and gravity tasks, described next) combined for all
cells, a science run will typically contain hundreds or even
millions of tasks. Individual threads on a many-core node
can thus all be executing tasks as long as these do not conflict
with each other, using task stealing to grab a new task as
soon as their current task is completed. Once a thread grabs
a new task, it blocks those tasks that conflict with it. In
addition to conflicts, the swift task engine also handles task
dependencies - for example the density of particles in a cell
and its neighbouring cell should have been computed before
pressure gradients can be computed.

Running this task-based parallelisation across MPI tasks in-
troduces relatively minimal additional complexity. If neigh-
bouring cells are assigned to different MPI tasks, swift
will generate extra communication tasks that exchange the
contents of individual cells using asynchronous communica-
tion. The distribution of particles (or rather cells) across
MPI tasks is based on the total costs of tasks - assigning
similar work to each MPI task - while aiming to minimise
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Figure 4: Time to solution strong scaling test of the
SPH implementation in swift compared to Gadget
2 for a realistic particle distribution with 51 million
particles taken from a cosmological volume. Scaling
is shown from 1 to 1024 cores (64 nodes with 16
cores each). swift uses 16 threads per core, gadget
2 uses MPI also within a node. swift reaches 60 per
cent parallel efficiency for strong scaling from 1 to
1024 cores.

communication that results from spatially non-contiguous
particle distributions. Generating and scheduling the inter-
dependent tasks is performed in a similar way as is done
in the QuickSched library [5] using the metis library [8]
to partition tasks over MPI tasks. An example is shown in
Fig.3 (a realistic version of Fig. 2), which shows a time-line
of how 8 nodes of 12 threads each execute a set of tasks
using MPI across nodes. Running on a realistic particle dis-
tribution, swift achieves 60 per cent parallel efficiency in
a strong scaling test increasing the core count from one to
1024 (see Fig. 4, see also [5]).

Using cells to organise particles spatially and identify poten-
tial neighbours may at first sight seem very different from
using a tree as in the Gadget 2 or Gasoline codes. How-
ever the algorithms are actually surprisingly similar once
one limits the depth of the tree to cells that contain ∼ 100
particles as is the case in swift. How to find neighbouring
cells in swift is actually also performed using a tree.

3.2 Gravity
Currently swift implements the Barnes-Hut tree code algo-
rithm [1] for evaluating the gravitational acceleration from
Eq. (3), with some modifications described below. The Barnes-
Hut algorithm divides the simulation volume spatially and
recursively in smaller cells. Such a division is very well suited
for evaluating gravitational interactions. Indeed consider a
particle i at some distance from a tree node. A good ap-
proximation for the contribution of that node to ai can be
obtained using a multipole expansion, for example repre-
senting all the particles in the node by their monopole, as
long as the distance particle-node is large compared to the
extent of the node. If the distance is small, the node is split

Figure 5: Time to solution strong scaling test of the
Barnes-Hut gravity implementation in swift com-
pared to Gadget 2 for a 10M highly-clustered par-
ticle distribution on a single node. Increasing the
thread count from 1 to 16 reduces the time to solu-
tion in swift by a factor 14, a 90 per cent efficiency
(red line). Increasing the number of MPI-tasks for
gadget-2 from 1 to 16 decrease the time to solution
by factor of 5.

in its daughter cells, and the algorithm recurs.

This Barnes-Hut algorithm decreases the computational cost
of evaluating ai for all particles from order N2 to order
N log(N) [1]. Note that two particles that are spatially close
are likely to execute nearly identical tree walks. In practise
most of the compute time is now spent in the tree walk
(rather than evaluating actual accelerations).

We implemented three optimisations of this algorithm in
swift. Firstly we limit the depth of the tree from leaf nodes
that contain a single particle (as in gadget) to cells with
∼ 100 particles. This is because the tree walk is not very
efficient for small numbers of particles.

Secondly we do not start a tree walk for each particle from
the root node, but rather walk the tree walk for nodes. For
each set of nodes, we decide whether they are sufficiently
distant to compute forces using multipoles, or they should
be split in their daughter nodes recursively. Doing so results
in a list of tasks, those in which particles in one node inter-
act with the multipole of another node, or those where all
particles in one node interact with all particles in a nearby
node. The latter task is implemented efficiently using the
same task-based approach as used for SPH in the previous
section.

Thirdly we use quadrupoles rather than monopoles. This
increases time to solution minimally yet make the accelera-
tions more accurate.

The speed and scaling of the tree implementation in swift
is compared to that of gadget 2 in Fig. 5, in which ai is
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calculated for each of 10M particles taken from the same
snapshot of an eagle simulation as used in Fig. 4 (a very
clustered distribution of particles). The speed of swift is
close to that of gadget 2 when run on a single core, and the
scaling up to 16 threads is close to ideal (parallel efficiency of
90 per cent). The public version of gadget 2 does not have
multi-threading, and the scaling shown is when increasing
the number of MPI tasks using one core per task.

4. CONCLUSIONS
We have implemented smoothed particle hydrodynamics (SPH)
and a Barnes-Hut tree-code for self-gravity in the cosmolog-
ical hydrodynamics code swift. By grouping nearby par-
ticles in cells, the calculation is broken-up into very many
short and inter-dependent tasks, whereby a single task pro-
cesses particles within a cell, or between pairs of cells. Task
dependencies and conflicts are encoded in the application.
Using cells improves cache efficiency and simplifies vectorisa-
tion. The tasks are distributed across nodes, with individual
threads using task-stealing within a node, and communica-
tion being performed asynchronously between nodes. We
find that such task-based parallelism is well suited to take
advantage of the multiple levels of parallelism of modern
many-core super computers. Applied to a realistic particle
distribution, swift’s SPH implementation reaches a parallel
efficiency of 60 per cent in a strong scaling test when increas-
ing core count from 1 to 1024, and better than 90 per cent
on a single 16-core node for gravity. Individual physics rou-
tines, for example those that evaluate interactions between
two particles, are implemented in simple kernels to shield the
physicist from the intricacies of tasks or MPI communica-
tions. swift is an open-source project, www.swiftsim.com.
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ABSTRACT
Thread-level parallelism in irregular applications with mu-
table data dependencies presents challenges because the un-
derlying data is extensively modified during execution of the
algorithm and a high degree of parallelism must be real-
ized while keeping the code race-free. In this article we de-
scribe a methodology for exploiting thread parallelism for
a class of graph-mutating worklist algorithms, which guar-
antees safe parallel execution via processing in rounds of
independent sets and using a deferred update strategy to
commit changes in the underlying data structures. Scalabil-
ity is assisted by atomic fetch-and-add operations to create
worklists and work-stealing to balance the shared-memory
workload. This work is motivated by mesh adaptation algo-
rithms, for which we show a parallel efficiency of 60% and
50% on IntelR©XeonR© Sandy Bridge and AMD OpteronTM

Magny-Cours systems, respectively, using these techniques.

Keywords
anisotropic mesh adaptivity, irregular data, shared-memory
parallelism, manycore, parallel worklist algorithm, topology
mutation, graph colouring, work-stealing, deferred update

1. INTRODUCTION
Finite element/volume methods (FEM/FVM) are commonly
used in the numerical solution of partial differential equa-
tions (PDEs). Unstructured meshes, where the spatial do-
main has been discretised into simplices (i.e. triangles in
2D, tetrahedra in 3D), are of particular interest in applica-
tions where the geometric domain is complex and structured
meshes are not practical. Simplices are well suited to vary-
ing mesh resolution throughout the domain, allowing for lo-
cal coarsening and refinement of the mesh without hanging
nodes. On the other hand, this flexibility introduces compli-
cations of its own, such as management of mesh quality and
computational overheads arising from indirect addressing.

Computational mesh resolution is often the limiting factor in
simulation accuracy. Being able to accurately resolve physi-
cal processes at the small scale coupled with larger scale dy-
namics is key to improving the fidelity of numerical models
across a wide range of applications (e.g. [15, 20]). A diffi-
culty with mesh-based modelling is that the mesh is gener-
ated before the solution is known, however, the local solution

error is related to the local mesh resolution. Overly coarse
meshes lead to low accuracy whereas over-refined meshes
can greatly increase the computational cost.

Mesh adaptation methods provide an important means to
minimise computational cost while still achieving the re-
quired accuracy [16, 12]. In order to use mesh adaptation
within a simulation, the application code requires a method
to estimate the local solution error. Given an error estimate
it is then possible to compute a solution to a specified error
tolerance while using the minimum resolution everywhere in
the domain and maintaining element quality constraints.

Previous work has described how adaptive mesh methods
can be parallelised for distributed-memory systems using
MPI (e.g. [12, 10]). However, there is a continuous trend
towards an increasing number of cores per compute node in
the world’s most powerful supercomputers and it is assumed
that the nodes of a future exascale system will each contain
thousands of cores [7]. Therefore, it is important that algo-
rithms are developed with very high levels of parallelism and
using thread-parallel programming models, such as OpenMP
[5], that exploit the memory hierarchy. However, irregu-
lar applications are hard to parallelise effectively on shared-
memory architectures for reasons described in [13].

In this article we take a fresh look at anisotropic adaptive
mesh methods and parallelise them using new scalable tech-
niques suitable for modern multicore and manycore architec-
tures. These concepts have been implemented in the open
source framework PRAgMaTIc (Parallel anisotRopic Adap-
tive Mesh ToolkIt)1. The remainder of the paper is laid out
as follows: §2 gives an overview of the mesh adaptation pro-
cedure; §3 describes the new irregular compute methodology
used to parallelise the adaptive algorithms; and §4 illustrates
how well our framework performs in 2D and 3D benchmarks.
We conclude the paper in §5.

2. MESH ADAPTIVITY BACKGROUND
In this section we give an overview of anisotropic mesh adap-
tation, focusing on the element quality as defined by an error
metric and the adaptation kernels which iteratively improve
local mesh quality as measured by the worst local element.

1http://meshadaptation.github.io/
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2.1 Error control
Solution discretisation errors are closely related to the size
and the shape of the elements. However, in general meshes
are generated using a priori information about the problem
under consideration when the solution error estimates are
not yet available. This may be problematic because (a) so-
lution errors may be unacceptably high and (b) parts of the
solution may be over-resolved, thereby incurring unneces-
sary computational expense. A solution to this is to compute
appropriate local error estimates and use them to dynam-
ically control the local mesh resolution at runtime. In the
most general case this is a metric tensor field so that the
resolution requirements can be specified anisotropically; for
a review of the procedure see [11].

2.2 Element quality
As discretisation errors are dependent upon element shape
as well as size, a number of measures of element quality have
been proposed, out of which, in the work described here, we
use the quality functionals by Vasilevskii et al. for trian-
gles [22] and tetrahedra [1], which indicate that the ideal
element is an equilateral triangle/tetrahedron with edges of
unit length measured in metric space.

2.3 Overall adaptation procedure
The mesh is adapted through a series of local operations:
edge collapse, edge refinement, element-edge swaps and ver-
tex smoothing. While the first two of these operations con-
trol the local resolution, the latter two are used to improve
the element quality. Algorithm 1 gives a high level view
of the anisotropic mesh adaptation procedure as described
by Li et al. [12]. The inputs are M, the piecewise linear
mesh from the modelling software, and S, the node-wise
metric tensor field which specifies anisotropically the local
mesh resolution requirements. The process involves the it-
erative application of coarsening, swapping and refinement
to optimise the resolution and quality of the mesh. The
loop terminates once the mesh optimisation algorithm con-
verges or after a maximum number of iterations has been
reached. Finally, mesh quality is fine-tuned using some ver-
tex smoothing algorithm, which aims primarily at improving
the worst-element quality. Smoothing is left out of the main
loop because it is an expensive operation and it is found
empirically that it is efficient to fine-tune the worst-element
quality once mesh topology has been fixed.

Algorithm 1 Mesh optimisation procedure.

Inputs: M, S.
repeat

(M∗,S∗)← coarsen(M∗, S∗)
(M∗,S∗)← swap(M∗, S∗)
(M∗,S∗)← refine(M∗, S∗)

until (max. number of iterations or convergence)
(M∗,S∗)← smooth(M∗, S∗)
return M∗

2.4 Adaptation kernels
A brief description of the four mesh optimisation kernels
follows. Figure 1 shows 2D examples to demonstrate what
each kernel does to the local mesh patch, but the same op-
erations are applied in an identical manner in 3D. For more
details on the adaptive algorithms the reader is referred to

Coarsening Swapping

Smoothing Refinement

Figure 1: Examples of the four adaptive kernels.

the publications by Li et al. [12] (coarsening, refinement,
swapping) and Freitag et al. [8, 9] (smoothing).

2.4.1 Coarsening
Coarsening is the process of lowering mesh resolution locally
by collapsing an edge to a single vertex, thereby removing
all elements that contain this edge, leading to a reduction in
the computational cost.

2.4.2 Refinement
Refinement is the process of increasing mesh resolution lo-
cally by (a) splitting of edges which are longer than desired
(as indicated by the error estimation) and (b) subsequent
division of elements using refinement templates [6].

2.4.3 Swapping
Swapping is done in the form of flipping an edge shared
by two elements, considering the quality of the swapped ele-
ments - if the minimum quality is improved then the original
mesh elements are replaced with the edge-swapped elements.

2.4.4 Smoothing
The kernel of vertex smoothing relocates a central vertex so
that the local mesh quality is increased. Common heuristic
methods are the quality-constrained Laplacian smoothing [8]
and the more expensive optimisation-based smoothing [9].

2.4.5 Propagation
The operations of coarsening, swapping and smoothing of-
ten need to be propagated to the local mesh neighbour-
hood. When a kernel is applied onto an edge/vertex, neigh-
bouring edges/vertices need to be reconsidered for process-
ing because the topological/geometrical changes that oc-
curred might give rise to new configurations of better quality.
Therefore, these adaptive algorithms keep sweeping over the
mesh until no further changes are made.

3. IRREGULAR COMPUTE METHOD
To allow fine grained parallelisation of mesh adaptation we
based our methodology on graph colouring, following a pro-
posal by Freitag et al. [10]. However, while this approach
avoids updates being applied concurrently to the same neigh-
bourhood, data writes will still incur significant lock and
synchronisation overheads. For this reason we incorporate
a deferred update strategy, described below, to minimise
synchronisations and allow parallel writes. Additionally, we
make use of atomic operations to create parallel worklists
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in a synchronisation-free fashion and, finally, try to balance
the workload among threads using work-stealing [3].

3.1 Hazards
There are two types of hazards when running mesh optimi-
sation algorithms in parallel: topological hazards; and data
races. The former refers to the situation where an adaptive
operation results in invalid or non-conforming edges and el-
ements. For example in coarsening, if some vertex VB col-
lapses onto another vertex VA, then VA cannot collapse onto
some other vertex at the same time. Data races can oc-
cur when two threads try to update the same adjacency list
of a vertex concurrently. For example in coarsening, two
neighbours of some vertex VA can collapse onto VA concur-
rently, then VA’s adjacency list has to be updated to reflect
the changes made by the coarsening operations. Concurrent
access to VA’s adjacency list may lead to race conditions.

3.2 Colouring
Topological hazards for all adaptive algorithms are avoided
by colouring a graph whose nodes are defined by the mesh
vertices and edges are defined by the mesh edges. The adap-
tive algorithm then processes the mesh in batches of inde-
pendent sets. The fact that topological changes are made
to the mesh means that colouring is invalidated frequently
and the mesh has to be re-coloured before proceeding to the
next iteration of the adaptive algorithm. Therefore, we need
to use a fast and scalable colouring algorithm (see [18]).

3.3 Deferred Update
Colouring does not eliminate data races when updating ad-
jacency lists. A 2-distance colouring was not considered here
as it is expensive and increases the chromatic number, effec-
tively reducing the exposed parallelism. Instead, in a shared-
memory environment with N threads, each thread allocates
a private collection of N lists. When the adjacency list of
some vertex Vi has to be updated, the thread executing the
adaptive kernel does not commit the update immediately;
instead, it pushes the operation back into the list for thread
tid = ID(Vi)%N , where ID(Vi) is the integer identifier of
Vi. After processing an independent set and before pro-
ceeding to the next one, every thread Ti visits the private
collections of all threads, locates the list reserved for Ti and
commits the updates stored there. This way, it is guaranteed
that one and only thread will update the adjacency list of
any given vertex. We call this technique the deferred update.
Code Snippet 1 demonstrates a typical usage scenario. An
important advantage of this strategy is that we always read
the most up-to-date data when executing an adaptive kernel
(as if we used an “as we go” write-back scheme), eliminating
the risk of mesh data corruption in coarsening, refinement
and swapping and having a faster-converging Gauss-Seidel-
style iteration process in smoothing.

3.4 Worklists and Atomic-Capture
There are many cases where it is necessary to create a work-
list of items which need to be processed, e.g. for propagation
of adaptive operations. New work items generated locally by
a thread need to be accumulated into a global worklist over
which the next invocation of the adaptive kernel will iterate.
The classic approach based on prefix sums [2] requires thread

1 typede f std : : vector<Updates> DefUpdList ;
2 i n t N = omp_get_max_threads ( ) ;
3

4 // N c o l l e c t i o n s o f de f e r red−update l i s t s
5 std : : vector< std : : vector<DefUpdList> > defUpd ( N ) ;
6

7 #pragma omp p a r a l l e l
8 {
9 i n t tid = omp_get_thread_num ( ) ;

10 // Al l o ca t e one l i s t f o r each thread .
11 defUpd [ tid ] . resize ( N ) ;
12

13 // Process the independent s e t in p a r a l l e l
14 #pragma omp f o r
15 f o r ( i n t i=0; i<nVerticesInSet ; ++i ){
16 update = execute_kernel ( i ) ;
17 // To be committed by thread i%N.
18 defUpd [ tid ] [ i%N ] . push_back ( update ) ;
19 }
20

21 // Commit updates t i d i s r e s p on s i b l e f o r .
22 f o r ( i n t i=0; i<N ; ++i )
23 commit_all_updates ( defUpd [ i ] [ tid ] ) ;
24

25 // Proceed to the next independent s e t . . .
26 }

Code Snippet 1: Example of the deferred update scheme.

synchronisation and was found limiting in terms of scalabil-
ity. A better method is based on atomic fetch-and-add on a
global integer which stores the size of the worklist needed so
far. Every thread increments this integer atomically while
caching the old value. This way, the thread knows where to
copy its private data and increments the integer by the size
of this data, so the next thread to access the integer knows in
turn where to copy its private data. An example of using this
technique via OpenMP’s atomic-capture clause [14] is given
in Code Snippet 2, where it is shown that no thread syn-
chronisation is needed to generate the global worklist (note
the nowait clause). The overhead/spinlock associated with
atomic-capture operations was found to be insignificant.

1 i n t worklistSize = 0;
2 std : : vector<Item> globalWorklist ( prealloc_size ) ;
3

4 #pragma omp p a r a l l e l
5 {
6 std : : vector<Item> private_list ;
7

8 #pragma omp f o r nowait
9 f o r ( all items which need to be processed ){

10 new_item = do_some_work ( ) ;
11 private_list . push_back ( new_item ) ;
12 } // No need to synchron i s e at end o f loop .
13

14 i n t idx ;
15 #pragma omp atomic capture
16 {
17 idx = worklistSize ;
18 worklistSize += private_list . size ( ) ;
19 }
20

21 memcpy (&globalWorklist [ idx ] , &private_list [ 0 ] ,
22 private_list . size ( ) ∗ s i z e o f ( Item ) ) ;
23 }

Code Snippet 2: Creating a worklist using atomic-capture.

3.5 Work-stealing
Work-stealing [3] is a sophisticated technique aiming at bal-
ancing workload among threads while keeping scheduling
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Figure 2: The initial condition for the viscous fin-
gering (left) and a snapshot of a simulation (right).

overhead as low as possible. For-loop scheduling strategies
provided by the OpenMP runtime system were found to be
inadequate, either incurring significant scheduling overhead
or leading to load imbalances. As of version 4.0, OpenMP
does not support work-stealing for parallel for-loops so we
created a novel scheduler [19] which differs from other pro-
posals in two ways: it engages a heuristic to help the thief
find a suitable victim to steal from; and uses POSIX signal-
s/interrupts to accomplish stealing in an efficient manner.

4. EXPERIMENTAL RESULTS
We will show adaptivity results for viscous fingering in 2D
and structural compliance minimisation in 2D and 3D, fol-
lowed by performance evaluation.

4.1 Viscous Fingering
Viscous fingering is a limiting process for enhanced oil re-
covery technologies. It happens whenever one fluid displaces
another with a higher viscosity [17], typically in a porous
media. A typical setup and simulation is shown in Figure
2, with the blue fluid having a viscosity e2 times lower than
the red fluid. The initial saturation is unperturbed and it
is thus the length scale of the initial mesh that triggers the
instability. Mesh adaptation is driven by the Hessian of the
pressure combined with the Hessian of the saturation φ [4].

4.2 Structural Optimisation
Structural compliance minimisation is concerned with the
problem of finding stiff and lightweight mechanical compo-
nents [21], often in the context of linear elasticity. The setup
for a classical cantilever problem with support to the left
and a load to the right is shown in Figure 3 (top left). The
question is how to form the stiffest possible link between
the two boundaries, given a certain amount of isotropic ma-
terial. The problem is ill-posed unless a minimum length
scale is imposed for the design, because the optimal struc-
ture is a composite. In fact, one can see a tendency towards
microstructured areas when a small minimum length scale
Lmin = 10−3Lchar is used as illustrated in Figure 3 (bottom
left). Note how the many straight and parallel connections
can be efficiently resolved with anisotropic elements. Mesh
adaptation is driven by the Hessians of the design and the
topological derivative [21]. A Helmholtz filter is applied to
both design and derivative to smooth out features smaller
than Lmin, before the Hessians are computed.

Figure 3: The setup for structural compliance min-
imisation (top left) and the result for the case of
a small minimum length scale (bottom left). Red
corresponds to solid areas and blue to void. The
result of compliance minimisation in 3D is shown in
terms of the cross-sectional view (top right) and the
solid/void interface (bottom right).

The two dimensional setup is also extruded to three dimen-
sions, as plotted in Figure 3 (top right and bottom right).
Note that the large planar areas with little curvature are
well resolved by the anisotropic elements. The increased di-
mensionality leads to a much simpler topology even though
the optimisation is performed with Lmin = 5 · 10−3Lchar.

In order to evaluate the parallel performance, a synthetic
solution ψ is defined to vary in time and space:

ψ(x, y, t) = 0.1 sin

(
50x+

2πt

T

)
+ arctan

(
−

0.1

2x− sin
(
5y + 2πt

T

))

where T is the period. This is a good choice as a benchmark
as it contains multi-scale features and a shock front, i.e. the
typical solution characteristics where anisotropic adaptive
mesh methods excel. An isotropic mesh was generated on
the unit square using approximately 200×200 triangles and
the adaptation benchmark was run with a requirement for
≈ 550k elements. The same example was extruded in 3D,
where an isotropic mesh was generated in the unit cube us-
ing approximately 50 × 50 × 50 tetrahedra and the adap-
tation benchmark was run with a requirement for ≈ 210k
elements. 3D swapping has not been parallelised, therefore
the corresponding results have been omitted.

The code was compiled using the Intel compiler suite (ver-
sion 14.0.1) and with the -O3 optimisation flag. We used two
systems to evaluate performance: (a) a dual-socket IntelR©

XeonR© E5-2650 system (Sandy Bridge, 2.00GHz, 8 cores per
socket, 2-way hyper-threading) running Red HatR©Enterprise
LinuxR© Server release 6.4 (Santiago) and (b) a quad-socket
AMD OpteronTM 6176 system (Magny-Cours, 2.3GHz, 12
cores per socket) running Ubuntu 12.04.5. In all cases,
thread-core affinity was used. Figures 4 and 5 show the
average (over 50 time steps) execution time per time step
and parallel efficiency against the number of threads using
single-socket (SS), dual-socket (DS) and quad-socket (QS)
configurations. On the IntelR©XeonR© system we also enable
hyper-threading (HT) to make use of all 40 logical cores.
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Running on one socket, our code achieves a parallel efficiency
of over 60% on IntelR©XeonR© and around 50% on AMD
OpteronTM. Smoothing scales better than the other algo-
rithms as it is more compute-intensive, which favours scal-
ability, reaching an efficiency of over 50% even in the quad-
socket case. When we move to more sockets, NUMA effects
become pronounced, which is expected as common NUMA
optimisations such as pinning and first-touch for page bind-
ing are ineffective for irregular computations. Nonetheless,
the achievable efficiency is good considering the irregular
nature of those algorithms.

5. CONCLUSION
In this paper we examined the scalability of anisotropic mesh
adaptivity using a thread-parallel programming model and
explored new parallel algorithmic approaches to support this
model. Despite the complex data dependencies and inher-
ent load imbalances we have shown it is possible to achieve
practical levels of scaling using a combination of a fast graph
colouring technique, the deferred-update strategy, atomic-
based creation of worklists and for-loop work-stealing. In
principle, this methodology facilitates scaling up to the point
where the number of elements of an independent set is equal
to the number of available threads.
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ABSTRACT
In this paper we propose a paradigm shift for exascale com-
puting by using a Hybrid Data-Flow/Control-Flow model of
execution. Programming of High Performance Computers
is mainly done through parallel extension of the sequential
model like MPI and OpenMP. Even though these extensions
facilitate high productivity parallel programming, they suf-
fer from the inability to tolerate long latencies.

The Data-Flow model of execution enforces only a partial
ordering as dictated by the true data-dependencies. This is
very beneficial for parallel processing because it allows to
exploit the maximum parallelism. Furthermore it tolerates
synchronization and communication latencies. We believe
that a paradigm shift to a hybrid Data-Flow and Control-
Flow system will improve the performance of High Perfor-
mance Computing (HPC).

Data Driven Multithreading (DDM), a threaded Data-Flow
programming/execution model, could be the platform for
the HPC paradigm shift. Our work on DDM showed that
DDM can efficiently run on state-of-the-art sequential ma-
chines, resulting in a Hybrid Data-Flow/Control-Flow sys-
tem.

Evaluation results of DDM implementations on a variety
of platforms showed that DDM can indeed tolerate syn-
chronization and communication latency. When comparing
DDM with OpenMP, DDM performed better for all bench-
marks used. This is primarily due to the fact that DDM
effectively tolerates latency. Similar results were also ob-
tained when comparing DDM implemented on a Cell pro-
cessor, with CellSs and Sequoia.

Keywords
Parallel Programming, Data-Flow, Data Driven Multi-
threading

1. INTRODUCTION
High Performance Computers and Supercomputers target
large problems that have a high degree of parallelism. Pro-
gramming of such machines is mainly done through parallel
extensions of the sequential models like MPI and OpenMP.
These extensions do facilitate high productivity parallel pro-
gramming, but also suffer from the limitations of the se-
quential synchronization and their inability to tolerate long
latencies. Arvind and Iannucci [4], Data-Flow proponents,
have been warning us since the 1980’s about the two fun-

damental issues in Multiprocessing: “long memory latencies
and waits due to synchronization events”. In their quest
to develop an exascale supercomputer, the United States,
through its DARPA agency, commissioned a study [14, 15] in
2007 to determine what kind of technologies will be needed
to build such a supercomputer. Peter Kogge, the leader
of the DARPA/USA study group for exascale computing,
confirmed that the communication and synchronization la-
tencies of the sequential model are getting out of hand for
HPC/Exascale machines. Furthermore, Kogge, states that
the power consumption of an exascale computer, will be
around 500 MW. Michael Flynn stated in his keynote speech
at FPL 2012 [9] that “We have multi-threaded, superscalar
cores with limited ILP; worse yet, most of the die area (80%)
is devoted to two or three levels of cache to support the
illusion of sequential model”. Thus, a paradigm shift for
exascale computing is necessary.

Data-Flow is a programming/execution model that provides
tolerance to communication and synchronization latencies.
Data-Flow has been proposed by a number of researchers
as an alternative to the Control-Flow model [7, 11, 4]. A
paradigm shift to Data-Flow based systems can reduce the
power consumption by architectural and organization opti-
mizations. Deterministic prefetching to scratch-pad mem-
ories, driven by Data-Flow, can reduce the SDRAM needs
of the multi/many-core systems considerably. Furthermore,
Data-Flow systems do not need complex modules such as
out-of-order execution, thus, the real-estate needs and the
power consumption could be reduced. The partial ordering
of the Data-Flow model reduces significantly the synchro-
nization latencies to only the true data-dependencies. Data-
Flow does not need cache coherence because it adheres to
the single assignment semantics. Thus, there is no need for
barriers and critical sections. In short, the Data-Flow model
can address some of the major issues that can help towards
the development of an exascale supercomputer.

SWARM (SWiFt Adaptive Runtime Machine) aims in Scal-
able Performance Optimizations for multi-core/multi-node
systems. SWARM is based on the codelets model which was
developed by the Data-Flow group of an earlier Data-Flow
based project, the EARTH project [12]. SWARM divides
a program into tasks, with runtime dependencies and con-
straints that can be executed when all runtime dependencies
and constraints are met. The runtime schedules the tasks
for execution based on resource availability. SWARM is ob-
ject oriented with a two-level threading system: the first
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level is heavy-weight bound to processing resources, and the
second level it consists of light-weight threads that run non-
preemptively. SWARM was compared with the current su-
percomputing state-of-the-art: OpenMP and MPI. Results
demonstrated that SWARM can outperform OpenMP even
in embarrassingly parallel applications such as the Barrness-
Hut. When compared with MPI on the Graph500 bench-
mark, SWARM showed consistent speedups up to 14.5 on
four supercomputers: Sandia Redsky with 8 processors per
node, and TACC Lonestar, Intel Endeavor, ORNL Jaquar
with 12 processors per node.

Data-Driven Multithreading (DDM) [17] is an execution
model that allows Data-Driven scheduling on sequential pro-
cessors. The core of the DDM model is the Thread Schedul-
ing Unit (TSU) which schedules threads dynamically at run-
time based on data availability. In DDM, a program is
divided into a number of threads. For each thread it col-
lects meta-data that enable the TSU to manage the depen-
dencies among the threads and determine when a thread
can be scheduled for execution. Data-Driven scheduling en-
forces only a partial ordering as dictated by the true data-
dependencies which is the minimum synchronization possi-
ble. This is very beneficial for parallel processing because
it exploits the maximum possible parallelism. Furthermore,
DDM can be implemented on state-of-the-art Control-Flow
machines, running in a threaded Data-Flow mode, with the
programmer or the system being able to switch between the
Control-Flow and the Data-Flow modes of execution. Thus,
resulting in a Hybrid Data-Flow/Control-Flow system.

The DDM model was evaluated by four different software
implementations: the Data-Driven Network of Workstations
(D2Now) [17], the Thread Flux Parallel Processing Plat-
form (TFlux) [21], the Data-Driven Multithreading Virtual
Machine (DDM-VM) [2], and DDM++, the latest software
DDM implementation. DDM++ is an object oriented im-
plementation of DDM that takes advantage of object ori-
ented techniques such as maintainability, re-usability, data-
abstraction and encapsulation. DDM++ programs are de-
veloped faster and easier because there is no need of using
macros, like in the previous DDM implementations. In the
previous DDM systems, the threads’ code was embodied in
the main function of the program, and macros were used
for executing them, using GOTO commands. In DDM++
the threads’ code is embodied in standard C functions. It is
noteworthy that the DDM applications developed in DDM-
VM are more than two times larger than in the DDM++
implementation. DDM was also evaluated by two hardware
implementations where the TSU with an 8-core processor
were built on an FPGA.

Evaluation results of DDM on a variety of platforms showed
that DDM can indeed tolerate synchronization and com-
munication latencies. DDM outperformed OpenMP for all
benchmarks. Similar results were obtained when comparing
DDM implemented on a cluster of four Cell processors, with
CellSs and Sequoia.

Our work on CacheFlow, the memory hierarchy system for
DDM, showed that the TSU is aware of the threads sched-
uled for execution in the near future, and hence the data
that will be needed in the near future. This enables the

implementation of optimized cache placement and replace-
ment policies, resulting in the need of smaller caches, or the
replacement of the cache with a small scratch-pad memory.
Furthermore, taking advantage of the near future memory
references results in more efficient cache replacement policies
that reduce bus/network traffic and power consumption.

Data-Flow provides tolerance to communication and syn-
chronization latencies, and has the potential of making the
processor smaller and more power efficient. Thus, it makes
sense to consider a shift to the Data-Flow paradigm now.

2. DATA-DRIVEN MULTITHREADING
The Data-Driven Multithreading (DDM) [17] is a non-
blocking multithreading model that allows data-driven
scheduling on sequential processors. A DDM thread (called
DThread) is scheduled for execution after all of its required
data have been produced, thus no synchronization or com-
munication latencies are experienced after a DThread begins
execution. In the DDM model, DThreads have producer-
consumer relationships. DThreads’ instructions are exe-
cuted by the CPU sequentially in a Control-Flow manner.
This allows the exploitation of Control-Flow optimizations,
either by the CPU at runtime or statically by the compiler.

In DDM, a program consists of the DThreads code, the
Thread Templates and the Dependency Graph. A Thread
Template holds the meta-data of a DThread. The lat-
ter describes the consumer-producer dependencies amongst
the DThreads. DDM is utilizing the Thread Scheduling
Unit (TSU), a special module responsible for scheduling
the DThreads in a data-driven manner. The TSU uses the
Thread Templates and the Dependency Graph to schedule
DThreads for execution when all of their producer-threads
completed their execution. This ensures that all data needed
by a DThread is available, before it is scheduled for execu-
tion.

2.1 DDM Implementations
The DDM model was evaluated by several software imple-
mentations. The first implementation, the D2Now [17], was
targeting Networks of Workstations. It has illustrated the
major components of DDM such as the TSU and CacheFlow
[16]. The evaluation was done using execution driven sim-
ulations. That was followed by two other implementations,
the TFlux [21] and the DDM-VM [2]. Both TFlux and
DDM-VM were targeting data-driven concurrency on se-
quential multiprocessors. DDM-VM supported distributed
multi-core systems for both homogeneous and heterogeneous
systems. TFlux also developed the TFlux directives and a
source-to-source compiler. The TFlux compiler was grad-
ually extended to support all DDM systems. The latest
software DDM implementation, the DDM++, is an object
oriented implementation that takes advantage of object ori-
ented techniques such as maintainability, re-usability, data-
abstraction and encapsulation.

DDM was also evaluated by two hardware implementations.
In the first one, the TSU was implemented as a hardware pe-
ripheral in the Verilog language and it was evaluated through
a Verilog-based simulation [18]. The results show that the
TSU module can be implemented on an FPGA device with a
moderate hardware budget. The second one [19] was the full
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Figure 1: Example of a DDM Dependency Graph.

hardware implementation with an 8-core system. A software
API and a source-to-source compiler were provided for devel-
oping DDM applications. For evaluation purposes, a Xilinx
ML605 Evaluation Board with a Xilinx Virtex-6 FPGA was
used. This implementation showed that data-driven execu-
tion can be implemented on sequential multi-core systems
with very small hardware budget and negligible overheads.

2.2 The DDM Dependency Graph and
Thread Context

The DDM Dependency Graph is a directed graph where the
nodes represent the DThreads and the arcs represent the
data dependencies amongst the DThreads. Each DThread
is paired with a special value called Ready Count (RC) that
represents the number of its producers. A simple example of
a Dependency Graph is shown in Figure 1 which is composed
of six DThreads. The RC values are depicted as shaded
values next to the nodes. The DThreads T2, T3 and T4
have one producer, the T1, as such their RC is set to 1. The
DThread T5 has also RC=1 since it has only one consumer,
the DThread T2. The T6’s RC is equal to 2 because it has
two producers. The RC value is initiated statically and is
dynamically decremented by the TSU each time a producer
completes its execution. A DThread is deemed executable
when its RC value reaches zero, such as the DThread T1 of
the Figure 1.

The Context attribute is a value that enables multiple in-
stances of the same DThread to co-exist in the system and
run in parallel. This is essential for programming constructs
such as loops and recursion. This idea was based on the
U-Interpreter’s tagging system [5] which provides a formal
distributed mechanism for the generation and management
of the tags at execution time. This system was used in Dy-
namic Data-Flow architectures to allow loop iterations and
subprogram invocations to proceed in parallel via the tag-
ging of data tokens [11].

The Context attribute in the previous DDM implemen-
tations was implemented as a 32-bit integer value. In
DDM++, we extend it into a 96-bit value in order to provide
more flexibility to the programmers. Figure 2 depicts a sim-
ple example of using multiple instances of the same DThread

Figure 2: Example of using multiple instances of the
same DThread.

through the Context attribute. The for-loop shown on the
top of the figure is fully parallel, thus it can be executed by
only one DThread. Each instance of the DThread is iden-
tified by the Context and it executes the inner command
of the for-loop. The for-loop is executed 64 times, thus 64
instances are created with Contexts from 0 to 63.

3. PERFORMANCE ANALYSIS AND PER-
FORMANCE EVALUATION

The DDM model was evaluated, in the past, by a number
of implementation, software and hardware. To demonstrate
the benefits of DDM we show an overview of the performance
evaluation results achieved by three different implementa-
tions: the Data-Driven Network of Workstations (D2Now)
with CacheFlow, the Data-Driven Multithreading Virtual
Machine (DDM-VM) [3] and DDM++.

3.1 D2Now Cacheflow:
D2Now has shown that scheduling based on data availability
can be used to exploit cache management policies that re-
duce significantly cache misses. Such policies include firing a
thread for execution only if its data is already placed in the
cache. Furthermore, two optimizations have been developed.
The first optimization, called the False Conflict Avoidance,
prevents the prefetcher from replacing cache blocks required
by the threads waiting to be executed. The second opti-
mization, called the Thread Reordering, attempts to exploit
locality by scheduling the multiple invocations of threads in
a sequential order on a single processor. We call this cache
management policy, the CacheFlow policy.

Figure 3 shows the effect of the CacheFlow optimizations
on the average cache miss rate between eight applications,
as well as the average speedup achieved on a 32-node sys-
tem. As shown in Figure 3, the baseline DDM configuration
shows a higher miss rate than the sequential as expected
(increase from 6.9% to 9.8%), which corresponds to a 42%
increase for the average of all applications. This reflects
the loss of locality for both the code and data. The basic
Prefetch CacheFlow implementation reduces the miss rate
from 9.8% to 3.1% (68%) compared to the baseline DDM.
It is important to notice that the reduction, achieved by
the basic Prefetch CacheFlow, results in miss rate values
lower than the original sequential execution. The use of the
other two CacheFlow optimizations, False Conflict Avoid-
ance and Thread Reordering, results in further reductions on
the miss rate, which becomes 2.0% and 1.4%, respectively.
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Employing CacheFlow with both optimizations resulted in
a speedup increase from 19.7 to 26.

Figure 3: Cacheflow Policies optimization results.

3.2 DDM-VMc:
DDM-VM [3] developed two virtual machines, one for Ho-
mogeneous (DDM-vms) and one for Heterogeneous (DDM-
VMc) systems. Both virtual machines support distributed
execution and have achieved good results [3]. DDM-VMc

has targeted the CELL processor. An automated prefetching
mechanism, called S-Cacheflow, was developed which moves
in Local Store of the SPEs the data required by the thread
that will be executed. When a thread terminates, it moves
that data to the shared memory of the PPE. DDM-VMc

achieves very good results. For the Matrix Multiplication it
achieved an average of 88% of the theoretical peak perfor-
mance for the 2048 size and an average of 86% and 76% for
the 1024 and 512 sizes respectively[2].

Figure 4 shows the comparison of DDM-VMc versus CellSs
for the Matrix Multiplication (MatMult) and Cholesky.
DDM-VMc outperforms CellSs for the entire range for both
applications. DDM-VMc achieves an average improvement
of 80% for the 512 size, 28% for 1024 and 19% for the 2048
size for MatMult. An improvement of 213% for 512, 99%
for 1024 and 23% for 2048 is achieved for Cholesky. We
attribute this to the fact that CellSs schedules annotated
tasks at run-time, based on data-dependencies, by building
the dependency graph at runtime. On the other hand, in our
model we create the dependency graph statically which min-
imizes the scheduling overheads. Moreover, CellSs makes
only a part of the graph available to the scheduler and con-
sequently a fraction of the concurrency opportunities in the
applications is visible at any time. DDM-VMc achieves the
best improvement vs. CellSs for the smaller problem sizes,
which indicates that it introduces less overhead for exploit-
ing concurrency.

DDM-VMc was also compared with Sequoia [8] and it
achieved an average improvement of 25% for Conv2D and
93% for Matrix Multiplication (Figure 5). Sequoia is a pro-
gramming language that facilitates the development of mem-
ory hierarchy aware parallel programs. It provides a source-
to-source compiler and a runtime system for the Cell. Un-
like DDM-VMc, Sequoia requires the use of special language
constructs and focuses on portability. DDM-VMc focuses on
high performance.

Figure 4: DDM-VMc versus CellSs.

Figure 5: DDM-VMc versus Sequoia.

3.3 DDM++:
The latest implementation of the DDM is the DDM++.
To evaluate the DDM++ architecture we have used an HP
server machine with 2 AMD Opteron 6276 processors run-
ning at 1.4GHz. Each processor is an 8-core 64 bit Clus-
tered Multi-Threaded (CMT) with the capacity of running
16 threads simultaneously, resulting in a total of 32 cores.
Each core has a 16KB 4-way set associative L1 data cache,
a 64K 2-way set associative L1 instruction cache and a 2MB
16-way set associative L2 cache. Also, the system utilizes
12MB 64-way set associative L3 cache. The server has a
48GB DDR3 RAM clocked at 1333MHz. Out of the 32 cores,
one is used to implement the TSU function, while the rest
are used as the computation units. This corresponds to a
single cluster DDM++ machine.

For the performance evaluation of our system we use a suite
of three different benchmarks: the Blocked Matrix Multi-
plication (BMMULT), the Blocked Cholesky Factorization
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(Cholesky) and the Blocked LU Decomposition (LU), and
compared the speedup results achieved, to those achieved
by running the same benchmarks using their OpenMP opti-
mized implementations. For all three benchmarks we have
used different problem sizes.

Figure 6: DDM++ vs OpenMP.

Figure 6 shows the speedups achieved for all three bench-
marks for the different problem sizes. In the case of BM-
MULT, for small problem sizes, DDM++ achieves better
performance than OpenMP. This is primarily due to the
thread creation overheads of the OpenMP that are very
high compared to the thread execution time. It should be
noted that in DDM, thread switching overheads are very
low, since it is mainly required to initialize the data frame
pointers and load the program counter with the address of
the first instruction of the thread. For medium and large
problem sizes both implementations achieved good perfor-
mance since Matrix Multiplication does not have complex
data dependencies.

In contrast to the BMMULT, Cholesky is a complex appli-
cation with strict data dependencies. As shown in Figure 6,
DDM++ achieves much better performance results com-
pared to the OpenMP implementation. This is due to the
DDM ability to tolerate synchronization latency by decou-
pling the synchronization from computations, and allowing

the TSU core to operate asynchronously from the computa-
tion cores. Furthermore, the speedup achieved by DDM++
does not vary significantly with the problem size. This is due
to the low parallelization and thread switching overheads of
the DDM model, as opposed to the OpenMP results, where
speedup is reduced significantly as problem size decreases.

The LU Decomposition benchmark has similar characteris-
tics with the Cholesky benchmark, with respect to the com-
plexity and data dependencies. As shown in Figure 6, the
results achieved for LU are similar to those of the Cholesky,
in the sense that DDM++ achieves better performance than
OpenMP, and that speedup does not vary significantly with
the problem size. The reason for this is the ability of the
DDM model to tolerate synchronization latency and amor-
tize parallelization overheads. It should be noted that the
speedups achieved for the LU benchmark are significantly
higher than those of the Cholesky.

The results achieved for all benchmarks show that DDM++
effectively leverages the decoupling of synchronization and
execution for the maximum tolerance of synchronization
overheads.

4. RELATED WORK
A number of threaded Data-Flow architectures and exe-
cution models have been proposed within the context of
multi/many-core systems. Scheduled Data-Flow (SDF)
[13] is a non-blocking decoupled memory/execution mul-
tithreaded architecture, where a program is partitioned
into non-blocking computation threads and memory-access
threads.

The Decoupled Threaded Architecture-Clustered (DTA-C)
[10] is an architecture that is based on the SDF architecture
with the addition of the concept of clustering resources. As
the name implies, the architecture is composed of a set of
clusters or tiles. The Explicit Data Graph Execution Archi-
tecture (EDGE) [6] proposes an ISA that supports direct
instruction communication that expresses the Data-Flow
graph the compiler generates.

The Fuce processor [1] is based on the Data-Flow-like con-
tinuation based multithreading model. A thread is defined
as a block of instructions that work on registers (except for
loads and stores) and is executed without interruption until
completion.

Star Superscalar (StarSs) [20] is a parallel programming
platform that targets symmetric multiprocessors and multi-
cores, the Cell processor and GPUs. It schedules annotated
tasks at run-time based on data-dependencies. Unlike the
approach adopted by our work, where we build the depen-
dency graph statically, StarSs always builds its task depen-
dency graph at run-time. This approach incurs extra over-
heads as it resolves the dependencies at run-time even if they
can be resolved at compile-time.

5. CONCLUSIONS
In this paper we make the case that a paradigm shift to a
parallel execution model, based on Data-Flow, can facilitate
the development of an efficient Exascale Supercomputer. We
propose that hybrid Data-Flow/Control-Flow systems can
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combine their strong points in the quest for an exascale com-
puting. Supercomputing is a niche market that strives for
highest possible performance. Such a niche market could
easily accept a paradigm shift if it can improve performance.

Hybrid Data-Flow/Control-Flow systems combine the best
characteristics of each model. Data-Flow is a parallel model
that enforces a partial ordering as determined by true data
dependencies. This enhances the parallelism present in a
program and avoids barriers and critical sections, which re-
duces the synchronization overheads and thus increases the
utilization of the machines.

Data-Flow has tolerance to latency and provides single as-
signment semantics that avoid side effects. Threaded Data-
Flow systems, like DDM, provide Data-Flow concurrency
among threads and execute the threads in a Control-Flow
matter. Such systems do not need out-of-order execution
or cache coherence mechanisms. Furthermore, they can im-
plement a light-way memory hierarchy with automated de-
terministic prefetching into scratch-pad memories. Thus,
reducing further the hardware complexity and the power
consumption.
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ABSTRACT
The simulation of ultrasound wave propagation through biological
tissue has a wide range of practical applications including plan-
ning therapeutic ultrasound treatments of various brain disorders
such as brain tumours, essential tremor, and Parkinson’s disease.
The major challenge is to ensure the ultrasound focus is accurately
placed at the desired target within the brain because the skull can
significantly distort it. Performing accurate ultrasound simulations,
however, requires the simulation code to be able to exploit several
thousands of processor cores and work with datasets on the order of
tens of TB. We have recently developed an efficient full-wave ultra-
sound model based on the pseudospectral method using pure-MPI
with 1D slab domain decomposition that allows simulations to be
performed using up to 1024 compute cores. However, the slab de-
composition limits the number of compute cores to be less or equal
to the size of the longest dimension, which is usually below 1024.

This paper presents an improved implementation that exploits
2D hybrid OpenMP/MPI decomposition. The 3D grid is first de-
composed by MPI processes into slabs. The slabs are further par-
titioned into pencils assigned to threads on demand. This allows 8
to 16 times more compute cores to be employed compared to the
pure-MPI code, while also reducing the amount of communication
among processes due to the efficient use of shared memory within
compute nodes.

The hybrid code was tested on the Anselm Supercomputer (IT4-
Innovations, Czech Republic) with up to 2048 compute cores and
the SuperMUC supercomputer (LRZ, Germany) with up to 8192
compute cores. The simulation domain sizes ranged from 2563

to 10243 grid points. The experimental results show that the hy-
brid decomposition can significantly outperform the pure-MPI one
for large simulation domains and high core counts, where the effi-
ciency remains slightly below 50%. For a domain size of 10243,
the hybrid code using 8192 cores enables the simulations to be ac-
celerated by a factor of 4 compared to the pure-MPI code. Deploy-
ment of the hybrid code has the potential to eventually bring the
simulation times within clinically meaningful timespans, and allow
detailed patient specific treatment plans to be created.

Keywords
Ultrasound simulations; 2D domain decomposition; OpenMP/MPI
Hybrid programming; Performance evaluation; Supercomputing,
k-Wave toolbox.

1. INTRODUCTION
The simulation of ultrasound wave propagation through biologi-

cal tissue has a wide range of practical applications. Recently, high
intensity focused ultrasound has been applied to functional neuro-
surgery as an alternative, non-invasive treatment of various brain
disorders such as brain tumours, essential tremor, and Parkinson’s
disease. The technique works by sending a focused beam of ul-
trasound into the tissue, typically using a large transducer. At the
focus, the acoustic energy is sufficient to cause cell death in a lo-
calised region while the surrounding tissue is left unharmed. The
major challenge is to ensure the focus is accurately placed at the
desired target within the brain because the skull can significantly
distort it.

Performing accurate ultrasound simulations, however, requires
the simulation code to be able to operate on large domains and de-
liver the results in a clinically meaningful time. Apart from the
physical complexity, the main obstacle in implementing new ultra-
sound treatment planning procedures in clinical practice is the com-
putational complexity. Considering the domain of interest encom-
passing the ultrasound transducer and the treatment area (normally
on the order of centimetres in each Cartesian direction), and the size
of the acoustic wavelength (on the order of hundreds of microme-
ters at the maximum frequency of interest), we have to simulate
the wave propagation over hundreds or thousands of wavelengths.
A sufficiently fine discretisation of the simulation domain which
avoids numerical dispersion and instability can easily lead to grid
sizes exceeding 1012 elements. Storing all the necessary acoustic
quantities for such a large simulation domain in computer memory
requires petabytes of memory and its processing reaches the order
of exascale.

We have recently developed a pure-MPI pseudospectral simula-
tion code using 1D domain decomposition that has allowed us to
run reasonable sized simulations using up to 1024 compute cores
[3]. However, this implementation suffers from the maximum par-
allelism being limited by the largest size of the 3D grid used. At
the age of exascale, more and more systems will have numbers of
processing cores far exceeding this limit. For example, a realis-
tic ultrasound simulation performed by the k-Wave toolbox might
use a grid size of 10243. Here, the 1D pure-MPI decomposition
would only scale up to 1024 cores at most leading to calculation
times exceeding clinically acceptable times (in this case between
30 and 72 hours). In contrast, top supercomputer facilities dispose
with several hundred thousand compute cores and could provide
the simulation result within an hour, if efficiently employed.

The second problem arising from limited parallelism is the total
amount of memory that can be used to store simulation data. Not
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scaling the code to larger core counts holds the simulation domain
size below 40963, which is not enough for some clinical applica-
tions (e.g., the use of shocked waves to vaporise a piece of tissue
which can produce hundreds of harmonics).

This paper presents an improved implementation that exploits a
2D hybrid OpenMP/MPI decomposition. The 3D grid is first de-
composed by MPI processes into slabs. The slabs are further parti-
tioned into pencils assigned to threads on demand. This is supposed
to (i) exploit shared memory within nodes and limit inter-process
communication, (ii) employ 8 to 16 times more compute cores, (iii)
increase the overall memory capacity while reducing the commu-
nication time.

2. DISTRIBUTED IMPLEMENTATION OF
ULTRASOUND SIMULATIONS

The k-Wave toolbox [8] is designed to simulate ultrasound wave
propagation in soft-tissues and bone, modelled as fluid and elas-
tic media, respectively. In the k-Wave toolbox, the k-space pseu-
dospectral method is used to solve the system of governing equa-
tions described in detail by Treeby in [9]. These equations are
derived from the mass conservation law, momentum conservation
law, and an empirically derived acoustic pressure-density relation
that accounts for acoustic nonlinearity, absorption, and heterogene-
ity in the material properties [9].

The k-space and pseudospectral methods gain their advantage
over finite difference methods due to the global nature of the spatial
gradient calculations [4]. This permits the use of a much coarser
grid for the same level of accuracy. However, the global nature
of the gradient calculation, in this case using the 3D fast Fourier
transform (FFT), introduces additional challenges for the develop-
ment of an efficient parallel code. Specifically, the FFT requires a
globally synchronising all-to-all data exchange. This global com-
munication can become a significant bottleneck in the execution of
spectral models. Fortunately, considerable effort has already been
devoted to the development of distributed memory FFT libraries
that show reasonable scalability of up to tens of thousands of pro-
cessing cores [2], [5], [7].

The distributed implementation was written in C++ as an exten-
sion to the open-source k-Wave acoustics toolbox [8]. The standard
message passing interface (MPI) was used to perform all interpro-
cess communications, the MPI version of the FFTW library was
used to perform the Fourier transforms [2], and the input/output
(I/O) operations were performed using the HDF5 library [1]. To
maximise performance, the code was also written to exploit single
instruction multiple data (SIMD) instructions such as SSE or AVX.
A detailed description can be found in [3]. The simulation time
loop can be broken down into several phases:

1. The gradient of acoustic pressure is calculated by the Fourier
collocation spectral method. This operation requires one for-
ward 3D FFT and a few element-wise operations.

2. The acoustic particle velocity (a 3D vector) is calculated based
on the acoustic pressure gradient using three inverse 3D FFTs
and a few element-wise operations.

3. The gradients of particle velocity for each spatial dimension
are calculated using three forward and three inverse 3D FFTs
interleaved by several element wise operations.

4. The acoustic density is updated based on the particle velocity
gradients using several element-wise operations.

5. The acoustic pressure field is updated based on the particle
velocity gradients, acoustic density, and the non-linearity and

absorption operators. This step includes two forward and
two inverse 3D FFTs, and several elementary element-wise
operations such as multiplication, addition, division, etc.

6. The desired acoustic quantities are sampled in regions of in-
terest and either stored on the disk as time-varying series or
further processed to calculate e.g. maximum, average, RMS,
etc.

There are two important features of the time loop that should be
highlighted. First, there are only two places where communication
among MPI processes is required. It is within the 3D FFT while
performing the distributed matrix transposition, and while the data
is being sampled, collected, and stored using the parallel HDF5 li-
brary. To reduce the communication burden, pairs of forward and
inverse FFTs do not bring the data into the original shape in be-
tween, instead a transposed shape is used to reduce the amount of
communication to one half [3]. Moreover, the output data is col-
lected and stored using chunks enabling buffering and staging of
I/O operations. The second observation is that the simulation time
loop is dominated by the FFT calculation. This accounts for nearly
60-80% (the higher number of processes, the higher proportion) of
the execution time while the rest of the element-wise operations
and the I/O only contribute by 40-20% [3]. Moreover, the FFT
itself spends the vast majority of its time waiting for data being
transmitted and transposed over the network.

The following subsections describe two different decompositions
of the 3D simulation space we have developed: the 1D pure-MPI
decomposition and the 2D Hybrid OpenMP/MPI decomposition.

2.1 Pure-MPI Decomposition
The pure-MPI decomposition is based on the 1D slab decom-

position natively supported by the FFTW library. In this case, the
3D domain is partitioned along the z axis and every MPI process
receives a given number of 2D slabs. In practice, all 3D matri-
ces (acoustic pressure, velocity, density, etc.) are partitioned and
distributed this way while several other support data structures are
either partitioned and scattered or simply replicated [3]. The com-
munication phase consists of one MPI_Alltoall communica-
tion performed as a part of the FFT, see Fig 1.

It has to be noted, that this decomposition provides reasonable
scaling as long as the number of MPI processes is smaller than
the z dimension size of the simulation domain. It also allows easy
deployment on many supercomputing systems and eliminates prob-
lems with proper thread pinning, memory affinity, and so on. How-
ever, the disadvantage, apart from the limited number of processes
to be used, is the communication overhead. With a growing num-
ber of MPI processes, the messages get smaller and smaller, while
the number of messages grows with P 2. This eventually leads to
network congestion and bandwidth decrease caused by the high la-
tency of routing small messages.

2.2 Hybrid OpenMP/MPI Decomposition
The hybrid OpenMP/MPI decomposition tries to alleviate the

disadvantages of the pure MPI decomposition by introducing a sec-
ond level of decomposition and further breaking the 1D slabs up
into pencils. In contrast to pure-MPI 2D decompositions, the small-
est chunk an MPI process can receive still remains a 1D slab. Thus,
the total number of MPI processes inherits the same limit as the 1D
decomposition presented above. However, in this case, MPI pro-
cesses are not mapped and bound to all compute cores, but only
to one core per socket or node. Once a process is mapped on a
socket/node, it spawns several OpenMP threads to process a given
number of pencils from the allocated slab/slabs. Considering that
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Figure 1: 1D domain decomposition and communication pat-
terns within a 3D FFT.

Figure 2: 2D domain decomposition and communication pat-
terns within a 3D FFT.

many current supercomputers comprise of shared memory nodes
typically integrating two sockets of 8 cores, we are able to scale the
simulation up by a factor of 8 or 16. Moreover, the OpenMP threads
can employ shared memory to significantly reduce the amount of
inter-process communication and help in exploiting local caches.

It should be noted, that the 2D decomposition requires two com-
munication phases to be carried out (one transpose along the y axis
followed by another one along the z axis). Pure-MPI approaches
typically implement this by a sequence of MPI_Alltoall com-
munication over the y and z axis [7], [5]. Since the whole 1D slab is
always placed on one socket/node, the hybrid implementation can
efficiently employ the shared memory to perform the first transpo-
sition. The second transposition is carried out the same way as the
1D decomposition (see Fig 2), however, with a fewer number of
processes (fewer and bigger messages, higher bandwidth, etc.).

The hybrid OpenMP/MPI simulation code was implemented in
a very similar way to the pure-MPI one. The FFT calculation is
based on the FFTW library tuned to be able to work with the 2D
decomposition. We used our custom implementation presented in
[6]. In a nutshell, it uses OpenMP FFTW kernels to perform se-
ries of 1D FFTs, a multi-threaded local transposition accelerated
by SIMD instructions, and a distributed transposition offered by
the FFTW library to carry out the communication part. This im-
plementation has proved its superiority over pure-MPI approaches
and enables better scaling than the original FFTW library (see [6]
for more detail).

The element wise operations implemented in various steps of the
simulation time loop were merged into a small number of kernels to
maximize the temporal locality, written to utilise SIMD extensions,

and run in parallel using the OpenMP library. To ensure correct
thread and memory affinity, the First Touch Strategy was used.

3. EXPERIMENTAL RESULTS
The experimental evaluation of the hybrid decomposition was

performed on two supercomputing systems, Anselm and Super-
MUC. Anselm is a Czech supercomputer operated by the IT4Inno-
vations National Supercomputing Center in Ostrava, Czech Repub-
lic. Anselm is an Intel-infiniband cluster based on Sandy Bridge
processors (2x8 core Intel E5-2665 at 2.4GHz and 64GB RAM per
node) interconnected by a 40Gb Fat-tree infiniband interconnec-
tion. The maximum number of cores we could use was 2048.

SuperMUC is a German supercomputer operated by Gauss Cen-
tre for Supercomputing and Leibniz Supercomputer Centre in Mu-
nich, Germany. SuperMUC is also an Intel-infiniband cluster based
on similar Sandy Bridge CPUs (2x8 core Intel Xeon E5-2680 at 2.7
GHz and 32GB RAM per node) interconnected by a 40Gb Fat-tree
infiniband network. The maximum number of cores we could use
was 8192.

Comparing the hardware configuration, both systems are very
similar and should produce very close results. The software stack
on the other hand is different and allows us to check different com-
pilers and MPI libraries. On Anselm, we used a GNU software
stack comprising of a GNU C++ compiler (g++-4.8), the OpenMPI
library in version 1.8.4, FFTW 3.3.3, and HDF5 1.8.13. The sched-
ule manager is based on the OpenPBS software. SuperMUC on the
other hand is based on an Intel software stack including an Intel
Compiler 2015, Intel MPI in version 5.0, FFTW 3.3.3 and HDF5
1.8.12. The schedule manager is based on LoadLeveler.

3.1 Test configurations
One of the most important issues rising when working with a

hybrid OpenMP/MPI code is the proper mapping of MPI processes
and threads to cores, sockets and nodes. Improper setting can sig-
nificantly deteriorate performance by allowing the threads to mi-
grate among cores/sockets and losing the memory affinity. Since
the default behaviour of MPI is to bind one process per core, spawn-
ing new threads by this process often leads to the threads being
bound to the same core. As a consequence, one core is heavily
overloaded while others are kept idle. The setting for three test
configurations was as follows:

1. Pure-C (pure-MPI code, core level mapping) - This configu-
ration uses the pure-MPI code implementing the 1D decom-
position compiled without the OpenMP extension. This code
is the reference for comparison. No special care has to be
taken to run this code.

2. Hybrid-S (hybrid code, socket level mapping) - This con-
figuration uses the hybrid OpenMP/MPI code implement-
ing the 2D decomposition compiled with the OpenMP li-
brary. The code starts one MPI process per socket and then
spawns 8 threads per process. On Anselm, the code was
launched with mpirun -map-by socket -bind-to
socket ./executable, the number of threads was set
by environmental variable OMP_NUM_THREADS=8 pinned
by GOMP_CPU_AFFINITY="0-15". On SuperMUC, the
LoadLeveler automatically sets all necessary environmental
variables when specifying task per nodes equal to 2.

3. Hybrid-N (hybrid code, node level mapping) - This con-
figuration uses the hybrid OpenMP/MPI code implement-
ing the 2D decomposition. The code starts one MPI pro-
cess per node and then spawns 16 threads per process. On
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Anselm, the code was launched with mpirun -map-by
node -bind-to none ./executable, the number of
threads was set by OMP_NUM_THREADS=16 and thread bind-
ing by GOMP_CPU_AFFINITY="0-15". On SuperMUC,
the LoadLeveler automatically sets all necessary environmen-
tal variables when specifying task per nodes equal to 1.

The performance was investigated by a few simulation cases cal-
culating the propagation of nonlinear waves in heterogeneous and
absorbing media with a source driven by a sine wave. The domain
sizes were chosen to equal 2563, 5123, and 10243 grid points. We
did not test larger domains due to extensive simulation cost and the
allocation limits. However, we expect better scaling with large sim-
ulation domains. The number of simulation timesteps varied from
100 to 1000 in order to get stable results and run the simulation for
a reasonable timespan. The overall simulation run was, however,
much longer due to the necessity of FFTW plan creation, which
could take up to 30 minutes [3].

3.2 Strong Scaling
The strong scaling plots describe how the execution time de-

creases with increasing number of compute resources. The size
of the problem is fixed. Fig. 3 and Fig. 4 show strong scaling for
simulation domains of 2563 and 5123 grid points, respectively, and
the number of compute cores growing from 16 (1 node) up to 2048
cores (128 nodes) on the Anselm supercomputer. The curves show
the average execution time per one time step of the pure-MPI and
two hybrid versions.

It can be seen that the simulation time decreases linearly, slowly
reaching a plateau at the end (2048 cores). This is given by the size
of the simulation grid, which is simply too small to keep all cores
busy; one core only has 8k or 65k grid points to calculate. We can
also conclude that the hybrid implementation is not so efficient for
small core counts and the Pure-C code beats the hybrid ones almost
twice. The clue is hidden in the communication part (the amount of
computation is the same in all cases). In the Pure-C code, all cores
participate in the communication transposing its part of the grid.
However, the hybrid codes only use the master thread to communi-
cate while the others are sleeping. Since the messages are quite big
at low core counts, the loss in concurrency affects the performance
by a great deal. For the smallest simulation domain size of 2563,
the hybrid decomposition seems to be inefficient. The Hybrid-S
code offers a factor of two in performance, however, when using
8 times more resources. The efficiency is thus very low. For a
bigger domain of 5123, the hybrid codes scale much better and
catches up with the Pure-C code at 128 cores (Hybrid-S version)
or 512 cores (Hybrid-N version). The real strength of the hybrid
code becomes evident beyond the scaling capability of the Pure-C
code (512 cores). The Hybrid-S configuration offers more than 2.3
times higher performance when running on 2048 cores (efficiency
of 57% compares to 512 cores).

The same test was also performed on SuperMUC, see Fig. 5.
Since having a much bigger allocation here, we used a grid size of
10243 and executed the simulation with core counts ranging from
64 to 8192. Again, the Pure-C code is faster for lower core counts
while the hybrid implementations win at the other side of the range.
An interesting peak occurs for 2048 cores (Hybrid-S) and 4096
cores (Hybrid-N) where the performance is much lower than ex-
pected. This peak was also observed on other grid sizes always
at the position where the number of cores is twice as high as the
size of z dimension for Hybrid-S version, and four times higher for
the Hybrid-N version. When investigating of this phenomenon, we
tried different FFTW planning flags (patient and exhaustive), vari-
ous compiler flags, MPI versions, and pinning strategies, however,
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Figure 3: Strong scaling on Anselm, simulation grid of 2563.
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Figure 4: Strong scaling on Anselm, simulation grid of 5123.

we did not succeed in eliminating this behaviour. We suspect that
it has something to do with the critical message size where MPI
changes the policy of transmitting messages (sync. vs buffered), or
that FFTW is unable to find a good communication plan.

To support this hypothesis we took a simulation flat profile, see
Table 1. The peaks in execution time directly correspond to the
communication share. In a typical run, the communication share
is about 50%, while in those exceptional cases the communication
share springs up to 75%. The profile confirmed our hypothesis that
the distributed transposition is not done optimally and a custom
routine needs to be implemented to ensure the correct behaviour.
This table also reveals that the hybrid OpenMP/MPI decomposition
bounds the communication at a reasonable level of 50%, even for
high core counts.

Fortunately, at least one of the hybrid versions works correctly

Table 1: Communication share for various core counts and hy-
brid implementations on SuperMUC (grid 10243).

core count Hybrid-S (MPI share) Hybrid-N (MPI share)
1024 51.60% 46.24%
2048 71.48% 48.95%
4096 52.84% 74.38%
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Figure 5: Strong scaling on SuperMUC, simulation grid of
10243.

at a given core count and the user has the ultimate choice. Finally,
we would like to note that Hybrid-S version offers almost 4 times
higher performance over Pure-C, which yields efficacy of almost
50%, which is not so bad considering the code is proven to be com-
munication and memory bound.

4. CONCLUSIONS
This paper has presented our first attempt to improve scaling of

large-scale ultrasound simulations using the hybrid OpenMP/MPI
decomposition. The main goal was to enable the code to employ
a number of compute cores exceeding the limit imposed by the
standard 1D decomposition (the size of the z dimension). By in-
troducing a second level of decomposition and breaking the 1D
slabs assigned to MPI processes into pencils computed by OpenMP
threads, as well as eliminating the need for another inter-process
transposition by the shared memory, we have been able to acceler-
ate the simulation by a factor of 4. This was achieved on Super-
MUC when using 8192 compute cores to compute ultrasound wave
propagation over a simulation domain discretised into 10243 grid
points. We also managed to keep the communication overhead at
an acceptable 50%.

We also observed curious behaviour for some configurations (num-
ber of processes and threads) where the simulation time abruptly in-
creased. This may be attributed to the inability of the FFTW to find
an optimal communication plan at this configuration. We can also
conclude, that the scaling gets better for bigger simulation domains.
While for domain sizes of 2563 grid points, the hybrid decompo-
sition does not bring much improvement due to the small amount
of work, large domains of 10243 and bigger appear to benefit from
the additional compute resources very well.

In our future work, we would like to test the code for bigger grid
sizes, introduce custom communication plans, and further optimise
the simulation code.
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ABSTRACT 
The problem of load balancing arises in parallel mesh-based 
numerical solution of problems of continuum mechanics, 
energetics, electrodynamics etc. on high-performance computing 
systems. The program package for parallel large mesh 
decomposition GridSpiderPar was developed. We compared 
different partitions into microdomains, microdomain graph 
partitions and partitions into subdomains of several meshes (108 
vertices, 109 elements) obtained by means of the partitioning tool 
GridSpiderPar and the packages ParMETIS, Zoltan and PT-
Scotch. Balance of the partitions, edge-cut and number of 
unconnected subdomains in different partitions were compared as 
well as the computational performance of gas-dynamic problem 
simulations run on different partitions. 

Keywords 
High-performance computing, graph partitioning, mesh 
decomposition. 

1. INTRODUCTION 
The problem of load balancing arises in parallel mesh-based 
numerical solution of problems of continuum mechanics, 
energetics, electrodynamics etc. on high-performance computing 
systems. Geometric parallelism is commonly used in most of 
applications for large-scale 3D simulations of the problems listed 
above. It implies that every branch of an application code 
processes a subset of computational mesh (a subdomain). In order 
to increase processors efficiency it is necessary to provide rational 
domain decomposition, taking into account the requirements of 
balanced mesh distribution among processors and reduction of 
interprocessor communications, which depend on the number of 
bonds between subdomains. 

The number of processors to run a computational problem is often 
unknown. It makes sense, therefore, to partition a mesh into a 
great number of microdomains which then are used to create 
subdomains. Microdomains are also used for efficient 
parallelization of domain decomposition methods (for example, 
Schwarz method) [1].  And microdomain partitions allow to 
increase the coefficient of mesh data compression in large mesh 
storage. 

Graph partitioning methods implemented in state-of-the-art 
parallel partitioning tools ParMETIS, Jostle, PT-Scotch and 
Zoltan are based on multilevel algorithms consisting of three 
phases: graph coarsening, initial partitioning and uncoarsening 
with refinement of the partitions. That approach has a 

shortcoming of making subdomains with longer frontiers or 
irregular shapes. In particular these methods can form 
unconnected subdomains. Such worsening of subdomain quality 
adversely affects the performance of subsequent computations. It 
may result in a larger number of iterations to achieve convergence 
of iterative linear system solving methods. Furthermore, 
unconnected subdomains have longer frontiers where in the 
subdomain composition algorithm value recalculations are 
required and this algorithm can’t be applied to narrow frontiers 
[2]. 

Another shortcoming of present graph partitioning methods is 
generation of strongly imbalanced partitions. This shortcoming is 
the most prominent in partitions made by ParMETIS, where 
number of vertices in some subdomains can be twice as large as in 
others. The imbalance can cause significant performance 
problems, especially in exascale computing. 

Moreover, partitions into large number of microdomains can’t 
always be obtained by the present graph partitioning methods. 

To solve above mentioned problems the program package for 
parallel large mesh decomposition GridSpiderPar was developed. 

2. PARALLEL PARTITIONING 
ALGORITHMS 
Two algorithms were implemented in the GridSpiderPar package: 
a parallel geometric algorithm of mesh partitioning and a parallel 
incremental algorithm of graph partitioning. The devised parallel 
algorithms support two main stages of large mesh partitioning. 
They are a preliminary mesh partitioning among processors and a 
parallel mesh partitioning of high quality. Both work with 
unstructured meshes with up to 109 elements. 

2.1 Parallel incremental algorithm 
The parallel incremental algorithm presented here is based on the 
serial incremental algorithm of graph partitioning [3].The main 
advantage of this algorithm is creation of principally connected 
subdomains. 

The parallel incremental algorithm consists of the following 
stages: 

• Distribution of vertices among processors according to the 
results of the geometric decomposition performed by the 
parallel geometric algorithm, described below. 

• Redistribution of small groups of vertices (Figure 1). 
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• Local partitioning of vertices into subdomains on each 
processor using the serial incremental graph partitioning 
algorithm. Figure 2 shows that after local partitioning 
borders of some subdomains coincide with the processors 
borders. 

• Redistribution of the groups of bad subdomains. Each group 
of bad subdomains is collected on a single processor. 

• Local repartitioning of the groups of bad subdomains using 
the serial incremental graph partitioning algorithm. In Figure 
2 (right) some subdomains spread to the other processors. 

 
Figure 1. Geometric distribution of vertices among processors 

(left) and redistribution of small groups of vertices between 
processors (right). 

 
Figure 2. Local partitioning (left) and bad subdomains groups 

repartitioning (right). 

At the beginning of the local partitioning of vertices into 
subdomains for each subdomain one vertex is chosen randomly as 
a seed. Further decomposition is performed within an iterative 
process, each step of which does the following: 

• Incremental growth of subdomains and diffusion of the 
border vertices between subdomains (Figures 3, 4). 

 
Figure 3. Incremental growth of subdomains. 

• Local refinement of subdomains using KL / FM local 
refinement algorithm. Subdomain boundaries become 
smoother. However, some subdomains are unconnected 
(Figure 4). 

 

Figure 4. Diffusion of the border vertices between subdomains 
(left) and local refinement (right). 

• Subdomains quality control. If the quality matches the 
specified one, the partition is found. In this case we exit the 
loop, otherwise - go to the next step. 

• Some part of the vertices in bad subdomains is released and 
switch to the first step is made (Figure 5). Bad subdomains 
are the subdomains of poor quality and their neighbors. In 
case of unconnected subdomains only the largest part is 
preserved in the subdomain. 

 
Figure 5. Releasing of some part of the vertices in bad 
subdomains (left) and the resulting partition (right). 

Subdomain quality is examined as follows (Figure 6). All vertices 
in a subdomain which belong to its border or graph border are 
considered as the first layer of the subdomain. Vertices in this 
subdomain adjacent to the vertices in the first layer and not 
belonging to the first layer are considered as the second layer of 
the subdomain. Other layers are defined by analogy. Layers 
continuity is examined and the noncontinuous layer with the least 
number is found. Quality of the subdomain is considered good if 
the number is greater or equal to a threshold value. 

 
Figure 6. Subdomain layers. 

2.2 Parallel geometric algorithm 
The parallel geometric algorithm of mesh partitioning is based on 
the recursive coordinate bisection method [4, 5]. At each stage of 
the recursive bisection an area is divided into two parts. The 
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resulting subareas are split the same way until there is only one 
subdomain left in each subarea. The algorithm can be described as 
follows: 

• Random initial distribution of vertices among processors (for 
example, according to the serial numbers of vertices). 

• Recursive coordinate bisection of the vertices among 
processors (Figure 7): 
o The algorithm makes cut of the box comprising the 

mesh. The cut is made orthogonal to the coordinate axis 
along which the box is the most elongated. 

o The group of processors is divided into two, then each 
group splits its vertices block in the same way. To 
divide the vertices block the parallel sorting [6] 
according to the selected coordinate axis (and the other 
axes to split cutting plane) is used. 

 
Figure 7. Geometric partitioning into 7 subdomains on 3 
processors. First and second stages of the partitioning - 

distribution of the vertices among processors. 

• Local recursive coordinate bisection of the vertices among 
subdomains. Further partitioning into subdomains is 
performed locally on each processor (Figure 8). 

 

Figure 8. The result of the geometric partitioning into 7 
subdomains on 3 processors. 

The main advantage of this algorithm is that difference in 
numbers of vertices in resulting subdomains is no more than one 
vertex.  

A similar algorithm is included in Zoltan [5]. The distinction of 
our algorithm is that it makes cuts of the cutting plane along other 
coordinate axes to distribute vertices from the cutting plane 
among subdomains (Figure 9). The algorithm from the Zoltan 
package distributes these vertices randomly, that increases edge-
cut of the resulting partitions. 

 
Figure 9. Cutting plane splitting. 

More detailed description of the devised algorithms can be found 
in the paper [7]. 

3. EXPERIMENTAL RESULTS 
3.1 Microdomain and subdomain partitions 
We compared different partitions into microdomains, 
microdomain graph partitions and partitions into subdomains of 
several meshes with 108 vertices, 109 edges (Figure 10) obtained 
by means of the partitioning tool GridSpiderPar and the packages 
ParMETIS, Zoltan and PT-Scotch. Balance of the partitions, edge-
cut and number of unconnected subdomains in different partitions 
were compared. 

 

Figure 10. Tetrahedral meshes. 

The methods in the comparison are: 

• IncrDecomp – the incremental algorithm of graph 
partitioning from the GridSpiderPar package. 

• PartKway - multilevel k-way graph partitioning algorithm 
from the ParMETIS package. 

• PartGeomKway - multilevel k-way graph partitioning 
algorithm from the ParMETIS package, making initial 
partitioning using a space-filling curve method. 

• PT-Scotch – multilevel diffusion algorithm from the PT-
Scotch package. 

• GeomDecomp – the recursive coordinate bisection method 
from the GridSpiderPar package. 

• RCB – recursive coordinate bisection method from the 
Zoltan package. 
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First, all the meshes were partitioned into 25600 microdomains 
(Table 1 and Table 2). The results in Table 1 show that imbalance 
in the partitions made by the methods incorporated in the 
ParMETIS package amounts to 60%, in the partitions made by 
PT-Scotch – 8%, whereas almost in all the partitions made by 
IncrDecomp imbalance is less than 1%. And in the partitions 
made by geometric methods difference in numbers of vertices in 
resulting microdomains is no more than one vertex, as it was 
supposed. Hereinafter, by imbalance is meant relative maximum 
deviation from an average number of vertices in subdomains. 
 

Table 1. Imbalance in 25600 microdomains, % 

Methods Mesh1 Mesh2 Mesh3 Mesh4 

graph partitioning 

IncrDecomp 3,5 0,1 0,3 0,2 

PartKway 53,4 59,8 58,6 64,3 

PartGeomKway 48,7 50,4 62,4 56,5 

PT-Scotch 8,3 8,3 8,3 8,3 

geometric methods 

GeomDecomp 0,01 0,01 0,02 0,01 

RCB 0,01 0,01 0,02 0,01 

We can see in Table 2 that number of unconnected microdomains 
in the partitions made by the methods from ParMETIS amounts to 
69 in 25600 microdomains as in the partitions made by the 
geometric methods. For PT-Scotch this number amounts to 7. 
Usually, only small number of microdomains in partitions made 
by PT-Scotch is unconnected but PT-Scotch doesn’t guarantee the 
connectivity of microdomains. And almost in all partitions made 
by IncrDecomp all microdomains are connected. 

Table 2. Number of unconnected microdomains in 25600 

Methods Mesh1 Mesh2 Mesh3 Mesh4 

graph partitioning 

IncrDecomp 0 0 0 1 

PartKway 69 35 37 29 

PartGeomKway 67 34 28 37 

PT-Scotch 7 0 2 4 

geometric methods 

GeomDecomp 62 38 16 33 

RCB 64 43 14 44 

Second, microdomain graphs were constructed for the partitions 
made by the methods from ParMETIS and GridSpiderPar. Vertex 
weights in the microdomain graphs correspond to the number of 
vertices in the microdomains. The microdomain graphs were 
partitioned into 512 subdomains on 1 processor using methods 
PartGraphRecursive and PartGraphKway from the package 
METIS, PartKway from ParMETIS and IncrDecomp from 
GridSpiderPar. And all the meshes were partitioned directly into 
512 subdomains using the methods PartKway and ParGeomKway 
from ParMETIS, the diffusion method from PT-Scotch and 
GeomDecomp from GridSpiderPar. 

The results of the comparison in Table 3 show that imbalance in 
the partitions made directly by the methods from ParMETIS 
amounts to 50%, in the partitions made by PT-Scotch – 5%. 
Imbalance in the microdomain graph partitions didn’t depend on 
the different imbalance in the microdomains and was about 5%. 
We assume that it’s connected with the small number of 
microdomains in one subdomain (50) and insufficient sensitivity 
of the graph partitioning algorithms to vertex weights. The least 
imbalance was in the microdomain graph partitions made by the 
methods from METIS. 

Table 3. Imbalance in 512 subdomains, % 

Methods Mesh1 Mesh2 Mesh3 Mesh4 

graph partitioning 

PartKway 12,9 20,6 17,6 28,4 

PartGeomKway 31,1 35,7 44,2 51,4 

PT-Scotch 4,9 1,7 2,8 2,9 

geometric methods 

GeomDecomp 0 0 0 0 

microdomain graph partitioning 

Simple average 5,3 5,4 3,7 5,1 

Run time of IncrDecomp is several times greater than run times of 
the other algorithms. Run time of GeomDecomp is the same as 
run times of the other geometric algorithms. But since the 
algorithms were devised for static decomposition and run times of 
physical tasks are much greater than run times of partitioners the 
increase of partitioning time isn't so essential. 

3.2 Gas-dynamic problem simulations run on 
different partitions 
Testing of partitions obtained by the tools GridSpiderPar, 
ParMETIS, Zoltan and PT-Scotch was performed using 
simulations of gas-dynamic problems. 

First test problem was model simulation of turbulent plasma flow 
in the ITER divertor (Figure 11). Situated along the bottom of the 
vacuum vessel, it is designed to extract heat and impurities from 
the plasma, in effect acting like a giant exhaust system. 

 
Figure 11. Plasma flow simulation in the ITER divertor. 

Computational mesh (divertor) contained 2,8·106 tetrahedrons. 
Full RMHD system with dissipation and turbulent viscosity was 
solved using tabulated equations of state, opacities and 
emissivities. Explicit and implicit schemes were used. The 
computations were carried out on 256 processors. 
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Another problem was the near-earth explosion simulation (Figure 
12). Two hexahedral computational meshes (boom and boomL), 
refined in the vicinity of blast area and consisting of 
parallelepipeds with different aspect ratio, were used: boom with 
6,1·107 parallelepipeds and boomL with 1,16·108 parallelepipeds. 
The computations were carried out on 4096 and 10080 processors 
respectively. Full RMHD system with radiative and conductive 
heat transfer was solved. Turbulent flows were not taken into 
account. Explicit and implicit schemes were used. 

 
Figure 12. Pressure spatial variations at t=1000 ms. 

Dual graphs were constructed for each test mesh with number of 
vertices 2,8·106 – 1,2·108 and number of edges 2,3·107 – 1,0·109. 
Dual graph partitions were obtained using the methods from the 
tools GridSpiderPar, ParMETIS, Zoltan and PT-Scotch. 
Two methods were added to the previous list: 

• RIB – recursive inertial bisection method from the Zoltan 
package. 

• HSFC – method based on a Hilbert space-filling curve 
splitting from the Zoltan package. 

For readability in Figures 13 – 15 the method IncrDecomp is 
marked by I, PartKway – by PK, PartGeomKway – by PGK, PT-
Scotch – by PTScotch and GeomDecomp – by G. The methods 
IncrDecomp and GeomDecomp are highlighted by differing 
colours, the graph partitioning algorithms and the geometric 
algorithms are separated. 

Figures 13 and 14 represent imbalance in the subdomain partitions 
in the sense of lack of vertices in subdomains and overflow of 
vertices in subdomains. Lack of vertices in subdomains in the 
partitions obtained by the methods from ParMETIS amounts to 
80%, overflow of vertices – to 5%. Imbalance in the partitions 
made by PT-Scotch in the two cases is about 5% and in the 
partitions made by IncrDecomp imbalance is less the 0,1%. 

 
Figure 13. Imbalance in subdomains: lack of vertices (boom). 

 
Figure 14. Imbalance in subdomains: overflow of vertices 

(boom). 
The least edge-cut was achieved in the partitions obtained by the 
ParMETIS methods or made by IncrDecomp. 

We used each test mesh partitions for the set of numerical 
experiments using the MARPLE3D research code designed in 
KIAM RAS [8] for multiphysics simulations in the field of 
radiative plasma dynamics. Computational performance of the 
simulations with MARPLE3D code run on different partitions was 
compared. All problems were run on the different partitions for 
the same time and numbers of time steps done within that time 
were measured. 
Comparison results (Figure 15) show that IncrDecomp method is 
ahead of the other graph partitioning methods, and GeomDecomp 
method slightly outruns the other geometric methods. Number of 
time steps on partitions obtained by the graph partitioning 
methods is greater than on partitions obtained by the geometric 
methods since geometric methods don’t take into account 
interprocessor communications. 

 
Figure 15. Number of time steps done within 1 hour 

(divertor). 

3.3 Testing of microdomain graph partitions 
on near-earth explosion simulation problem 
The dual graph boomL with 1,2·108 vertices and 1,0·109 edges 
was partitioned into different number of microdomains (from 
24576 to 196608) and directly into 3072 subdomains by the 
devised algorithm IncrDecomp from the GridSpiderPar package. 
Microdomain graphs were constructed with vertex weights 
corresponding to the number of vertices in the microdomains. The 
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microdomain graphs were partitioned into 3072 subdomains by 
the method IncrDecomp. 

The abovementioned near-earth explosion simulation problem 
was run on the different partitions for the same time (5 hours) and 
numbers of time steps done within that time were measured. 

Table 4. Testing of microdomain graph partitions on the near-
earth explosion simulation problem 

Mesh info name:  BoomL 
116 214 272   hexahedrons 

Micro- 
domains 

 
3072 24576 49152 98304 196608 

Micro- 
domains 

in 
subdomain 

1 8 16 32 64 

Imbalance, 
% 9,1 62,5 37,5 18,7 7,9 

Cut edges 5,31· 
107 

6,46· 
107 

6,65· 
107 

6,88· 
107 

6,82· 
107 

Neigh- 
bouring 

subdomains 
(max.) 

28 25 25 23 21 

Time steps 1107 833 880 949 999 
 
We can see in Table 4 that the partitions contain from 1 (direct 
partitioning into 3072 subdomains) to 64 microdomains in one 
subdomain. Imbalance in the microdomain graph partitions 
decreases with increase of the number of microdomains in one 
subdomain and for 64 microdomains in one subdomain the 
imbalance is less than in the direct partition into 3072 
subdomains. Maximal number of neighbouring subdomains also 
decreases with increase of the number of microdomains in one 
subdomain. Maximal number of neighbouring subdomains 
influences on the number of interprocessor communications. 
Number of cut edges increases, because the microdomain graphs 
didn’t take into account the number of cut edges between the 
microdomains. Number of time steps done within the same time 
increases with increase of the number of microdomains in one 
subdomain and for 64 microdomains in one subdomain the 
number of time steps is near to the number of time steps done on 
the direct partition into 3072 subdomains. 

So we can say that with the sufficient quantity of microdomains in 
one subdomain microdomain graph partitions are not worse than 
direct graph partitions that is verified by small deceleration of the 
gas-dynamic problem simulation. In addition, microdomain graph 
partitioning takes much less time than direct graph partitioning. 

4. CONCLUSION 
The program package for parallel large mesh decomposition 
GridSpiderPar was developed. Two algorithms were implemented 
in the GridSpiderPar package: a parallel geometric algorithm of 
mesh partitioning and a parallel incremental algorithm of graph 
partitioning. The devised parallel algorithms support two main 
stages of large mesh partitioning: preliminary mesh partitioning 
among processors and parallel mesh partitioning of high quality. 
Both work with unstructured meshes with up to 109 elements. The 

main advantage of the second algorithm is creation of principally 
connected subdomains. 

We compared different partitions into microdomains, 
microdomain graph partitions and partitions into subdomains of 
several meshes (108 vertices, 109 elements) obtained by means of 
the partitioning tool GridSpiderPar and the packages ParMETIS, 
Zoltan and PT-Scotch. Balance of the partitions, edge-cut and 
number of unconnected subdomains in different partitions were 
compared as well as the computational performance of gas-
dynamic problem simulations run on different partitions. The 
obtained results demonstrate advantages of the devised 
algorithms. 
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01-00663-a, 14-07-00712-а and 15-07-04213-a. The computations 
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1. ABSTRACT
Addressing the major challenges of software productivity
and performance portability becomes necessary to take ad-
vantage of emerging extreme-scale computing architectures.
As software development costs will continuously increase to
deal with exascale hardware issues, higher-level program-
ming abstractions will facilitate the path to go. There is
a growing demand for new programming environments in
order to improve scientific productivity, to ease design and
implementation, and to optimize large production codes.
We introduce the numerical analysis specific language Nabla
(∇) which improves applied mathematicians productivity,
and enables new algorithmic developments for the construc-
tion of hierarchical composable high-performance scientific
applications. One of the key concept is the introduction
of the hierarchical logical time within the high-performance
computing scientific community. It represents an innovation
that addresses major exascale challenges. This new dimen-
sion to parallelism is explicitly expressed to go beyond the
classical single-program multiple-data or bulk-synchronous
parallel programming models. Control and data concurren-
cies are combined consistently to achieve statically analyz-
able transformations and efficient code generation. Shifting
the complexity to the compiler offers an ease of programming
and a more intuitive approach, while reaching the ability to
target new hardware and leading to performance portabil-
ity.
In this paper, we present the three main parts of the ∇
toolchain: the frontend raises the level of abstraction with its
grammar; the backends hold the effective generation stages,
and the middle-end provides agile software engineering prac-
tices transparently to the application developer, such as: in-
strumentation (performance analysis, V&V, debugging at
scale), data or resource optimization techniques (layout, lo-
cality, prefetching, caches awareness, vectorization, loop fu-
sion) and the management of the hierarchical logical time,
which produces the graphs of all parallel tasks. The refactor-
ing of existing legacy scientific applications is also possible
by the incremental compositional approach of the method.

2. INTRODUCTION
Nabla (∇) is an open-source [4] Domain Specific Language
(DSL) introduced in [6] whose purpose is to translate nu-
merical analysis algorithmic sources in order to generate op-
timized code for different runtimes and architectures. The
objectives and the associated roadmap have been motivated
since the beginning of the project with the goal to provide
a programming model that would allow:

• Performances. The computer scientist should be
able to instantiate efficiently the right programming
model for different software and hardware stacks.

• Portability. The language should provide portable
scientific applications across existing and fore-coming
architectures.

• Programmability. The description of a numerical
scheme should be simplified and attractive enough for
tomorrow’s software engineers.

• Interoperability. The source-to-source process should
allow interaction and modularity with existing legacy
codes.

As computer scientists are continuously asked for optimiza-
tions, flexibility is now mandatory to be able to look for
better concurrency, vectorization and data-access efficiency,
even at the end of long development processes. The self-
evident truth is that it is too late for these optimizations
to be significantly effective with standard approaches. The
∇ language constitutes a proposition for numerical mesh-
based operations, designed to help applications to reach
these listed goals. It raises the level of abstraction, fol-
lowing a bottom-up compositional approach that provides
a methodology to co-design between applications and un-
derlying software layers for existing middleware or heteroge-
neous execution models. It introduces an alternative way, to
go further than the bulk-synchronous way of programming,
by introducing logical time partial-ordering and bringing an
additional dimension of parallelism to the high-performance
computing community.
The remainder of the paper is organized as follow. Section
3 gives an overview of the ∇ domain specific language. Sec-
tion 4 introduces the hierarchical logical time concept. The
different elements of the toolchain are described in section
5. Finally, section 6 provides some evaluations and exper-
imental results for Livermore’s Unstructured Lagrange Ex-
plicit Shock Hydrodynamics (Lulesh) [15] proxy application
on different target architectures.
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2.1 Related Work
Because application codes have become so large and the ex-
ploration of new concepts too difficult, domain specific lan-
guages are becoming even more attractive by offering the
possibility to explore a range of optimizations.
Loci[18] is an automatic parallelizing framework that has
been supporting the development of production simulation
codes for more than twenty years. The framework provides a
way to describe the computational kernels using a relational
rule-based programming model. The data-flow is extracted,
transformations are applied to optimize the scheduling of
the computations; data locality can also be enhanced, im-
proving the overall scalability of a Loci application.
SpatialOps which provides the Nebo[11] EDSL is an em-
bedded C++ domain specific language for platform-agnostic
PDE solvers [21]. It provides an expressive syntax, allow-
ing application programmers to focus primarily on physics
model formulation rather than on details of discretization
and hardware. Nebo facilitates portable operations on struc-
tured mesh calculations and is currently used in a number
of multiphysics applications including multiphase, turbulent
reacting flows.
Liszt[10] is a domain-specific language for solving PDE on
meshes for a variety of platforms, using efficient different
parallel models: MPI, pthreads and CUDA. The design of
computational kernels is facilitated: the data dependencies
being taken care of by the compiler.
Terra[9] is a low-level language, designed for high perfor-
mance computing, interoperable with Lua [20]. It is a stat-
ically typed, compiled language with manual memory man-
agement and a shared lexical environment.
Scout[19] is a compiled domain-specific language, targeting
CUDA, OpenCL and the Legion[5] runtime. It does not pro-
vides a source-to-source approach, but supports mesh-based
applications, in-situ visualization and task parallelism. It
also includes a domain-aware debugging tool.
RAJA[14, 16] is a thin abstraction layer consisting of a
parallel-loop construct for managing work and an IndexSet
construct for managing data. The composition of these com-
ponents allows architecture specific details of programming
models, vendor compilers, and runtime implementations to
be encapsulated at a single code site, isolating software ap-
plications from portability-related disruption, while enhanc-
ing readability and maintainability.
Thanks to the source-to-source approach and its exclusive
logical time model, ∇ is able to target some of the above
listed languages. It allows developers to think in terms of
more parallelism, letting the compilation process tools per-
form appropriate optimizations.

Listing 1: Libraries and Options Declaration in ∇
with ℵ , slurm ;

options{
Real o p t i o n d t f i x e d = −1.0e−7;
Real opt i on δ t i n i t i a l = 1 .0 e−7;
Real opt i on δ t courant = 1 .0 e +20;
Real opt i on δ t hydro = 1 .0 e +20;
Real o p t i o n i n i e n e r g y = 3.948746 e+7;
Real opt ion s topt ime = 1 .0 e−2;
Bool opt ion rdq = f a l s e ;
Real opt i on rdq α = 0 . 3 ;
Integer op t i on max i t e r a t i on s = 8 ;
Bool o p t i o n o n l y o n e i t e r a t i o n = f a l s e ;

} ;

3. OVERVIEW OF THE NABLA DSL
This section introduces the ∇ language, which allows the
conception of multi-physics applications, according to a log-
ical time-triggered approach. Nabla is a domain specific
language which embeds the C language. It follows a source-
to-source approach: from∇ source files to C, C++ or CUDA
output ones. The method is based on different concepts: no
central main function, a multi-tasks based parallelism model
and a hierarchical logical time-triggered scheduling.

3.1 Lexical & Grammatical Elements
To develop a ∇ application, several source files must be
created containing standard functions and specific for-loop
function, called jobs. These files are provided to the com-
piler and will be merged to compose the application. The
compilation stages operate the transformations and return
source files, containing the whole code and the required data.
An additional stage of compilation with standard tools must
therefore be done on this output.

Listing 2: Variables Declaration in ∇
nodes{ ce l l s {

Real3 ∂ tx ; Real p ;
Real3 ∂ t2x ; Real3 ε ;
Real3 nForce ; Real3 cForce [ nodes ] ;
Real nMass ; Real d e l v x i ;

} ; } ;

To be able to produce an application from ∇ source files, a
first explicit declaration part is required. Language libraries
have to be listed, options and the data fields -or variables-
needed by the application have to be declared. Libraries
are introduced by the with token: additional keywords will
then be accessible, as well as some specific programming in-
terfaces. For example, the aleph (ℵ) library provides the
matrix keyword, as well as standard algebra functions to
fill linear systems and solve them. The options keyword al-
lows developers to provide different optional inputs to the
application, with their default values, that will be then ac-
cessible from the command line or within some data input
files. Listing 1 provides an example of libraries and options
declaration in ∇.
Application data fields must be declared by the developer:
these variables live on items, which are some mesh-based
numerical elements: the cells, the nodes, the faces or the
particles. Listing 2 shows two declarations of variables liv-
ing on nodes and cells. Velocity (∂tx), acceleration (∂t2x)
and force vector (nForce), as well as the nodal mass (nMass)
for nodes. Pressure (p), diagonal terms of deviatoric strain
(ε) and some velocity gradient (delv_xi) on cells.
Different data types are also available, such as Integer,
Bool, Real or three-dimension vector types Real3, allowing
the insertion of specific directives during the second compi-
lation stage. Unicode letter and some additional mathemat-
ical operators are also provided: the Listing 3 gives some
operators that are actually supported and particularly used
in reduction statements, assignment, conditional, primary
and multiplicative expressions.

Listing 3: Additional ∇ Expressions
<?= >?= ?= @ ∀ ℵ ∧ ∨ ∞ 2 3 √ 3

√ 1
2

1
3

1
4

1
8 ? · × ⊗
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3.2 Functions and Jobs Declaration
In order to schedule standard functions and jobs, the lan-
guage provides some new syntactic elements, allowing the
design of logical time-triggered multi-tasking applications.
Data-parallelism is implicitly expressed by the declaration
of jobs, which are functions with additional attributes. The
first attribute is the item on which the function is going
to iterate: it can be a for-loop on cells or nodes for exam-
ple. Input and output variables the job will work with are
also to be provided. Finally an attribute telling when the
job shall be triggered can also be given: this introduces the
logical-time triggered model of parallelism that is presented
in section 4.

Listing 4: ∇ Job Declaration, a for-loop on nodes
nodes void iniNodalMass (void )

in ( ce l l ca lc vo lume )
out (node nodalMass ) @ −6.9{
nodalMass =0.0;
∀ ce l l nodalMass += calc vo lume / 8 . 0 ;

}

Listing 4 is a for-loop, iterating on the nodes, set by the
developer to be triggered at the logical time ’-6.9’. This
job uses in its body the ’∀’ token, which starts another for-
loop, for each cell the current node is connected to.

Listing 5: ∇ Job Declaration, another on cells
ce l l s void temporalComputeStdFluxesSum (void )

in ( ce l l r econs t ructed u , node u ,
ce l l r econs t ructed p ,
ce l l CQs, ce l l AQs)

out ( ce l l momentum fluxes Σ ,
ce l l t o t a l e n e r g y f l u x e s Σ) @ 16 .0 {

foreach node{
const Real3 ∆u = recons t ructed u−u ;
Real3 FQs = AQs ? ∆u ;
FQs += recons t ruc t ed p ∗CQs ;
momentum fluxes Σ −= FQs ;
t o t a l e n e r g y f l u x e s Σ −= FQs · u ;

}
}

The job in Listing 5 illustrates an explicit scheme [8]. It is
a for-loop on cells, triggered at the logical time ’+16.0’, and
with an inner connectivity loop on each of the cell’s nodes.
Two mathematical operators are used in this job: the vector
dot product ’·’ and the matrix vector product ’?’.

Listing 6: ∇ Job Declaration Statement
ce l l s void calcEnergyForElems1 (void )

in ( ce l l e o ld , ce l l delvc ,
ce l l p old , ce l l q old , ce l l work )

inout ( ce l l e new ) @ 7 .1 {
e new = e o ld−1

2∗ de lvc ∗( p o ld+q o ld )+1
2∗work ;

e new = ( e new<opt ion emin ) ? opt ion emin ;
}

Listing 6 comes from the proxy application Lulesh [17], dur-
ing the equation of state phase. It is a cell job, working on
some of its variables and set to be launched at logical time
’7.1’. It shows the use of the ’?’ binary operator, which
changes the ternary standard C ’?:’, by allowing to omit
the ’else’ (’:’) statements, meaning here ’else unchanged ’.

Listing 7: ∇ Implicit Job: filling a matrix
nodes void δNodes (void )

in ( face δ ,
node θ ,
node node area ,
node node i s an edge ,
face Cosθ , face sd i v s ) @ 3 .4 {

Real δn ,Σδ=0.0;
i f ( node i s an edge ) continue ;
foreach face {

Node other=(node[0]== this ) ?node [ 1 ] : node [ 0 ] ;
δn=δ/ node area ;
Σδ+=1.0/(Cosθ∗ sd i v s ) ;
ℵ matrix addValue( θ , this , θ , other ,−δn) ;

}
Σδ∗=δ t / node area ;
ℵ matrix addValue( θ , this , θ , this ,1 .0+Σδ ) ;

}

The job in Listing 7 is a for-loop on each node of the domain.
It is set to be triggered at ’+3.4’. The aleph (ℵ) library to-
ken and its programming interface is used to fill the matrix.
The degrees of freedom are deduced by the use of pairs of
the form: (item,variable). Two degrees of freedom are used
here: (θ,this) and (θ,other).

More simple jobs can be expressed, like the one presented in
Listing 8. It is one of the two reductions required at the end
of each iteration in the compute loop of Lulesh. δt hydro is
the global variable and the δt cell hydro is the one attached
to each cell. It is here a minimum reduction over all the cells.

Listing 8: ∇ Reduction Statement
∀ ce l l s δ t hydro <?= δ t c e l l h y d r o @ 1 2 . 2 2 ;

The different ’@’ attributes are then gathered and combined
hierarchically by the toolchain, in order to create the logi-
cal time triggered execution graph, used for the scheduling
of all functions and jobs of the application. Next section
introduces the composition of such logical time statements.

4. HIERARCHICAL LOGICAL TIME
The introduction of the hierarchical logical time within the
high-performance computing scientific community represents
an innovation that addresses the major exascale challenges.
This new dimension to parallelism is explicitly expressed
to go beyond the classical single-program-multiple-data or
bulk-synchronous-parallel programming models. The task-
based parallelism of the ∇ jobs is explicitly declared via
logical-timestamps attributes: each function or job can be
tagged with an additional ’@’ statement. The two types of
concurrency models are used: the control-driven one comes
from these logical-timestamps, the data-driven model is de-
duced from the in, out or inout attributes of the variables
declaration. These control and data concurrency models are
then combined consistently to achieve statically analyzable
transformations and efficient code generation.

By gathering all the ’@’ statements, the ∇ compiler con-
structs the set of partially ordered jobs and functions. By
convention, the negative logical timestamps represent the
initialization phase, while the positive ones compose the
compute loop. You end up with an execution graph for
a single ∇ component.
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Table 1: ∇ Logical Time Diagrams: a is the
totally-ordered time-diagram from a typical mini-
application ported to ∇ with consecutive for-loops;

b is the diagram of a better partially-ordered nu-
merical scheme. Colors stand for the job items.

a b

Table 1 presents two kinds of execution graphs: the first
one (a) is taken from a typical proxy application, as the sec-
ond one (b) comes from a new implicit numerical scheme
[7], designed and written in ∇ entirely. No additional paral-
lelism lies in the first totally-ordered diagram, whereas the
second one exposes a new dimension that can be exploited
for scheduling.
Each ∇ component can be written and tested individually.
A nested composition of such logical-timed components be-
comes a multi-physic application. Such an application still
consists in a top initialization phase and a global computa-
tional loop, where different levels of ∇ components can be
instantiated hierarchically, each of them running there own
initialization/compute/until-exit parts. This composition is
actually done by the compiler with command line options;
the need of frontend tools will rapidly be crucial as applica-
tions grow bigger.

5. THE NABLA TOOLCHAIN
The ∇ toolchain is composed of three main parts, illustrated
in Figure 1. The frontend is a Flex [1] and Bison [2] parser
that reads a set of ∇ input files. The middle-end provides
a collection of software engineering practices, transparently
to the application developer. Instrumentation, performance
analysis, validation and verification steps are inserted during
this process. Data layout optimizations can also take place
during this phase: locality, prefetching, caches awareness
and loop fusion techniques are in development and will be
integrated in the middle-end.

Figure 1: The three parts of the ∇ Toolchain: the
Sources Analysis (Frontend), the Optimizations &
Transformations (Middle-end) and the Generation
Stages (Backends).

The backends hold the effective generation stages for differ-
ent targets or architectures:

• ARCANE [13]. It is a numerical code framework
for high-performance computing. It provides multiple
strategies of parallelism: MPI, threads, MPI+threads
and the Multi-Processor Computing framework (MPC)
[24].

• CUDA [25, 22]. CUDA is a programming model to
target NVIDIA’s graphics processing unit (GPU). The
∇ compiler generates homogenous source files: all the
numerical kernels run exclusively on the GPU. Initial
speedups have been achieved with only minimal initial
investment of time for this backend: further optimiza-
tion opportunities are to be identified and deployed.

• OKINA. This standalone backend comes with the ∇
toolchain. C/C++ source files are generated: the code
is fully-vectorized by the use of intrinsics classes. The
choice of underlying data structures is possible for dif-
ferent hardwares: specific layouts with their associated
prefetch instructions or the Kokkos [12] abstraction
layer, are two examples. For now, only OpenMP 4.0
[23] and Cilk+ [3] can be used as underlying parallel
execution runtimes.

As a demonstration of the potential and the efficiency of this
approach, the next section presents the Lulesh benchmark,
implemented in ∇. The performances are evaluated for a
variety of hardware architectures.
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6. ∇-LULESH EXPERIMENTAL RESULTS
The Lulesh benchmark solves one octant of the spherical
Sedov blast wave problem using Lagrangian hydrodynamics
for a single material. Equations are solved using a staggered
mesh approximation. Thermodynamic variables are approx-
imated as piece-wise constant functions within each element
and kinematic variables are defined at the element nodes.
For each figure, cells-updates-per-µs for different kind of
runs are presented. On Figures 2 and 3, yellow bars show
the reference performances of the downloadable version, the
violet ones are obtained with the hand-optimized OpenMP
version and finally, blue ones are the performances reached
from the ∇-Lulesh source files and the OKINA backend.

Figure 2: Reference (ref.), Optimized (Optim.) and
∇ Lulesh Performances Tests on Intel Xeon-SNB
with the C/C++ Standalone OKINA+OpenMP
Backend and no-vec., SSE or AVX Intrinsics. Higher
is better.

Figure 2 shows the results obtained on Xeon Sandy Bridge
E5-2680@2.7GHz architectures. Different kinds of vector-
ization are represented for each run: no-vectorization, only
SSE and full AVX. The ∇-Lulesh version presents a simi-
lar level of performances as the optimised one, despite the
scatter and gather instructions generated by the backend
which are emulated by software on this architecture.

Figure 3: Reference (ref.), Optimized (Optim.) and
∇ Lulesh Performances Tests on Intel Xeon PHI
with the C/C++ Standalone OKINA+OpenMP
Backend and AVX512 Intrinsics

Figure 3 shows the performances obtained on Intel Xeon-
PHI processors with the AVX512 vectorization intrinsics.
In this example, the scatter and gather operation codes,
supported by the hardware, are not emulated anymore and
a higher level of performances is reached, better than the
hand-tuned version.

Figure 4: ∇-Lulesh Speedups on Intel Xeon PHI:
A speedup of more than one hundred is reached for
a mesh of 125000 Elements with 240 Threads

Figure 4 shows the speedup with the OKINA+OpenMP
backend that is reached for different runs. The number of
cells are presented on the X-axis, the number of threads used
on the Y-axis. The 3D-surface renders in hot colors where
the application starts taking advantage of hyper-threading
on this architecture. A speedup of more than a hundred is
reached for a mesh of more than one hundred thousands of
cells on more than two hundreds of threads.

Figure 5: ∇-Lulesh Speedups on a quad core Intel
Xeon Haswell: the OKINA+OpenMP backend vs
other OpenMP versions

Finally, Figure 5 presents the performance results on a sin-
gle Intel Xeon Haswell E3-1240v3 at 3.40GHz of different
OpenMP versions of Lulesh. The LULESH-OMP one can be
downloaded and is the reference in this test. The LULESH-

OPTIM-OMP-ALLOC is an optimized version and the BestSandy
is the fastest that can be found on the web site: it stands
for the best candidate with OpenMP. The last one is the ∇-
Lulesh version with OKINA. The 3D-surface renders again
in hot colors the best speedups that are reached for different
mesh sizes and for the different versions. The results of the
OKINA backend are as good as the BestSandyICC ones: the
back of the surface stays on the same level of speedup.

These results emphasize the opportunity for domain-specific
languages. Doing so opens up a potential path forward for
enhanced expressivity and performance. ∇ achieves both
portably, while maintaining a consistent programming style
and offering a solution to the productivity issues.
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7. DISCUSSION AND FUTURE WORK
The numerical-analysis specific language Nabla (∇) provides
a productive development way for exascale HPC technolo-
gies, flexible enough to be competitive in terms of perfor-
mances. The refactoring of existing legacy scientific appli-
cations is also possible by the incremental compositional ap-
proach of the method. Raising the loop-level of abstractions
allows the framework to be prepared to address growing con-
cerns of future systems. There is no need to choose today
the best programming model for tomorrow’s architectures:
∇ does not require to code multiple versions of kernels for
different models.
Nabla’s source-to-source approach and its exclusive logical
time model will facilitate future development work, focusing
on new backends: other programming models, abstraction
layers or numerical frameworks are already planned.
The generation stages will be improved to incorporate and
exploit algorithmic or low-level resiliency methods by coor-
dinating co-designed techniques between the software stack
and the underlying runtime and operating system.
∇ is open-source, ruled by the French CeCILL license, which
is a free software license, explicitly compatible with the GNU
GPL.
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ABSTRACT
Large Eddy Simulation is a critical modelling tool for scien-
tists investigating atmospheric flows, turbulence and cloud
microphysics. Within the UK, the principal LES model used
by the atmospheric research community is the Met Office
Large Eddy Model (LEM). The LEM was originally devel-
oped in the late 1980s using computational techniques and
assumptions of the time, which means that the it does not
scale beyond 512 cores. In this paper we present the Met
Office NERC Cloud model, MONC, which is a re-write of
the existing LEM. We discuss the software engineering and
architectural decisions made in order to develop a flexible,
extensible model which the community can easily customise
for their own needs. The scalability of MONC is evaluated,
along with numerous additional customisations made to fur-
ther improve performance at large core counts. The result of
this work is a model which delivers to the community signifi-
cant new scientific modelling capability that takes advantage
of the current and future generation HPC machines.

Keywords
MONC, LEM, Large Eddy Simulation, Met Office

1. INTRODUCTION
Large Eddy Simulation is a computational fluid dynamics
technique used to efficiently simulate and study turbulent
flows. In atmospheric science, LES are often coupled to
cloud microphysics and radiative transfer schemes, to create
a high resolution modelling framework that is employed to
develop and test physical parametrisations and assumptions
used in numerical weather and climate prediction. In the
UK, the Met Office Large Eddy Model (LEM) is the prin-
cipal LES that is used within the Met Office and academia.
It includes a detailed cloud microphysics representation and
a version of the operational radiative transfer scheme. The
LEM was initially developed in the 1980s and, whilst the sci-
entific output from the model is cutting edge, the code itself
has become outdated. Hard coded assumptions made about
parallelism, which were sensible 20 years ago, are now the
source of severe limitations and this means that the model
does not scale beyond 512 cores. This prevents scientists
from carrying out very high resolution modelling on the lat-
est HPC machines.

As machines become larger, and significantly different from
the architectures that a code was initially designed for, it
can sometimes be easier to re-write poorly performing ap-
plications rather than attempt to modernise them through
re-factoring. The Met Office NERC Cloud model (MONC)
is a complete re-write of the LEM, providing the atmospheric
scientific community with a tool for modelling atmospheric
flows, turbulence and clouds at very high resolutions and/or
near real time. The fact that this aspires to be a commu-
nity code, along with the desire to future proof to as great
an extent as possible, has heavily influenced the design of
the code. We have adopted a “plug in” architecture, de-
scribed in section 3.1, where the model is organised as a
series of distinctive, independent, components which can be
selected at run-time. This approach, which we discuss in
detail, not only allows for a variety of science to be easily
integrated but it also supports development targeting differ-
ent architectures and technologies by simply replacing one
component with another.

Other innovative aspects of the code are presented and in
particular our approach to data analysis and processing (sec-
tion 3.2), which is a major feature of the model. These
models analyse their raw data to produce higher level in-
formation, for instance the average temperature in a cloud
or tracking of how specific clouds move through the atmo-
sphere. The existing LEM, like many codes, performs data
analysis inline as part of the model timestep which, along
with the I/O operation time, is a major bottleneck. In con-
trast MONC uses the notion of an I/O server, where typ-
ically one core per processor is dedicated to handling and
analysing the data produced by the model, which is running
on the remaining cores. In this manner, MONC can act in a
“fire and forget” fashion, asynchronously sending data to the
“local” I/O server and continuing on with the next timestep
whilst it is being processed.

Based upon the innovative approaches adopted, we present
in section 4 performance and scalability results of MONC
and discuss some of the lessons learnt, both in terms of large
scale parallelism and software engineering techniques, that
have become apparent in order to reach the level of scalabil-
ity and performance demanded by the community. Section
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5 draws some conclusions and considers future work.

2. BACKGROUND
The Large Eddy Model (LEM) [2] has been an instrumental
tool, used by the weather and climate communities, in mod-
elling clouds and atmospheric flows. Since its inception in
the late 1980s, it has been a fundamental tool in the devel-
opment and testing of the Met Office Unified Model (UM)
boundary layer scheme [9][10], convection scheme [14][13]
and cloud microphysics [1][7]. Given the solid scientific ba-
sis of the LEM, as established by the inter-comparison stud-
ies of [8][12][15][4], the community continues to heavily rely
on this code as a means for furthering the state of the art.
The model was initially developed for single processor, scalar
machines and then vectorised to take advantage of the Cray
C90, with much of the resulting loop and array structure
still present in the current code base. It was not until the
mid 1990s when the Met Office took delivery of a Cray T3E,
their first parallel machine, that the code was parallelised.
Since then, from a software point of view, some perfective
maintenance has been performed to allow the LEM to run
on later generations of machines but the same basic assump-
tions and principals have remained unchanged since the code
was parallelised or even first written thirty years ago.

Even for very simple test cases, the LEM scales very poorly
beyond 512 cores. A major reason for this is the fact that
the LEM only decomposes in one dimension into slices (in
X), there are a minimum of two slices per process and due
to the way the grid is decomposed, choices for the global do-
main size in the X direction are severely limited by those in
the Y direction. These restrictions place severe limitations
upon the model and, whilst one might wish to extend the
size in X to gain more parallelism, this also requires an ex-
tension in Y which increases the amount of data held locally
and often means that the code reaches memory limits. The
result is that the community are often forced to run the code
unpacked, where all the memory of a node is used but not all
the cores, this is a waste of additional compute resource and
explicitly required in order to work around the limitations
of the current model. Whilst MPI is used for parallelism,
the calls are indirect and go via an abstraction layer called
GCOM. This is a throwback to the fact that, in the mid
1990s when the model was first parallelised, MPI was not
the de-facto standard that it is now and hence it was quite
sensible to decouple the communication technology from the
actual model. More recently this layer has become more of
a hindrance than a help not least because generations of
scientists have misunderstood the semantics of the different
communication calls. For example, global barriers can often
be found intertwined with point-to-point communications
without differentiating between memory re-use in buffered
and non-blocking sends.

The other important aspect to consider, from a software en-
gineering perspective, is code maintainability. The LEM is
written in a mixture of FORTRAN 66, 77 and 90, employing
a variety of old fashioned programming constructs such as
global variables, gotos and equivalence blocks. This is fur-
ther exacerbated by the fact that scientists have modified
the same files without the enforcement of code standards,
so the style is very inconsistent throughout and changes
abruptly. Code management is done via a system called nup-

date where the code is organised into a snapshot at a specific
version called the base, and user code which contains mod-
ifications for patching or specific simulations. These files
contain, in addition to the code itself, a series of commands
such as deleting lines of code from a specific file in the base,
modifying existing code or inserting code. These are all fed
into nupdate which effectively pre-processes everything into
an intermediate, unstructured form which is then compiled.
From a user’s point of view, one of the major problems is
that compiler messages bear no resemblance to their view of
the code which can make debugging very difficult to achieve.

This combination of poor scalability, poor performance and
antiquated software engineering techniques has meant that
the community are now finding it more and more difficult
to effectively use this model for the science that they wish
to investigate. Modern machines such as ARCHER, a Cray
XC30 (the UK national supercomputing service), and the
Cray XC40 that the UK Met Office are taking delivery of
in 2015 have hundreds of thousands of cores. Many of the
problems that the scientific community wish to tackle re-
quire parallelism at this level, however the existing LEM can
only take advantage of a fraction of the overall capabilities
of these machines and as such requires extensive modernisa-
tion.

3. MONC
In order to support the current and next generation of sci-
ence we had a choice between refactoring the existing LEM
or using the well validated and trusted underlying science of
the LEM as the basis for an entirely new model which shares
no code. As a result of the common science and scientific
assumptions the original LEM can be used for comparison.
Because of the many fundamental issues with the LEM, not
just in terms of parallelisation but also how the code is writ-
ten and managed, we elected to follow the re-write avenue.
Whilst keeping the same science the re-write route allowed
us to use, from day one, modern software engineering and
parallelisation techniques. The new model, called the Met
Office NERC Cloud model (MONC) is written in Fortran
2003 with MPI for parallelisation and a number of other
third party tools, such as Fruit [3] for unit testing and Doxy-
gen [6] for documentation. There are two important aims
for this code, firstly to provide a community model which
is easy and accessible for non HPC experts to modify and
extend without having to worry about impacts upon other
unrelated areas of the code. Secondly performance and scal-
ability are a major concern for our development of the model
and in order to support the scientific community’s desired
problems the code is firmly targeted at the peta- and exa-
scale.

There is a requirement for the model to support multiple
compilers, initially the Cray, GNU, Intel and IBM compilers
although this list is subject to change in the future. Whilst
compiler implementation of the Fortran 2003 standard has
reached maturity in some areas this is not universal and
other aspects are not as commonly interpreted or well tested
by all. Therefore a unit testing framework, which automat-
ically compiles code and runs the tests using these differ-
ent technologies is critically important for ensuring specific
compiler support and code correctness throughout the de-
velopment process.

Proceedings of the 3rd International Conference on Exascale Applications and Software 133

A highly scalable Met Office NERC Cloud model Brown, Weiland, Hill, Shipway, Maynard, Allen & Rezny



3.1 Architecture
MONC has been designed around pluggable components
where the majority of the code complexity, including all of
the science and parallelisation, are contained within these
independent units. They are managed by a registry and
at run-time the user selects, via a configuration file, which
components to enable. The aim was to make it trivial for
a user to add their own components. To encourage this a
standard means of definition and interaction with the model
has been specified. The majority of a component’s function-
ality is contained within optional callback procedures, which
are called by the model at three stages: upon initialization,
for each timestep and upon model completion. There are no
global variables in MONC, but instead a user derived type
is used to represent the current state of the model and this
is passed into each callback which may modify the state.
Using this approach means that the model’s current state is
represented in a structured manner and the type represents
a single point of truth about the model’s status at any point
in time.

Figure 1 illustrates the outline of a MONC component, the
function test get descriptor provides a descriptor of the com-
ponent which contains its name, version number and (op-
tionally) populated procedure pointers that represent the
callbacks. It can be seen that in this component callbacks
have been provided for model initialisation and timestep-
ping. The initialisation callback and timestep callback pro-
cedures are the actual callbacks themselves and the current
model’s state is provided via the current state argument
which is of a Fortran derived type and similar to C structs.
This model state type derived type contains the current sta-
tus of the model in a structured manner which the call-
back procedures may modify. This component is contained
within a Fortran module and is picked up by the MONC
build system at compile time, and enabled by the user via
test component enabled=.true. in the configuration file. The
MONC registry, which manages these components, also al-
lows for the user to provide more detailed configuration, for
instance, determining the order in which components are
run for each different callback.

Alongside the numerous components representing scientific,
parallelism or miscellaneous functionality there is also a model
core. This core contains a minimal amount of code to start
the model and both manage and support the components
themselves. The way in which the core manages compo-
nents is via a registry, which stores central information about
each component and a list of procedure pointers for initial-
isation, timestepping and finalisation which are called it-
eratively rather than having to parse each component for
every callback. Whilst components are entirely independent
from each other and strictly do not interact, it was identified
early on in the development process that they often share
some common functionality requirements such as the need
for logging, data conversions or mathematical functionality.
Therefore a series of utilities have been added to the model
core, exposed via an API, which provide common functions
that components might require and this saves one reinvent-
ing the wheel each time a new component is added.

The model core is mature and the project restrict who may
check code in, it is well documented and unit tested to pro-

vide a solid foundation for the model. In summary the ben-
efits of adopting a component based architecture for MONC
are:

• Trivial to add new components: Following the stan-
dard format these are picked up, included in the model
and then simply enabled in the configuration file. Be-
cause components are independent and share no code
or variables then they simply plug in and out.

• Can add immature components without polluting the
rest of the code base: Due the independent nature of
these facets, new functionality can be developed with-
out having to modify existing code. This is impor-
tant as it allows for additional science to be developed,
tested and checked into the code repository without
impacting other areas of MONC.

• Simple run-time configuration to customise the model :
A component represents some aspect of the model such
as scientific functionality. By adopting this high level
approach it is very obvious what functionality is repre-
sented in each component and users can easily turn off
aspects which are of no interest to their specific run.
It is also trivial for users to develop replacement com-
ponents for areas that they wish to modify or improve.
These plug-in via a structure manner. In existing mod-
els functionality can often be found a number of levels
down in the code, and it can be not only difficult to
find calls to disable but also to understand how this
might impact the rest of the model.

• Conceptual simplicity : From a code point of view the
running of the model and how each component works
via its own callback procedures is a simple concept to
understand.

The model core also contains an options database, which
acts as a centralised store for all model configuration op-
tions. When the model is started this database is populated,
either from a text configuration file for new simulations or
an existing model checkpoint file for continuing simulations.
The utilities API of the model core exposes functions to
components so that they can check for and retrieve infor-
mation from this database. Upon a model checkpoint write
this centralised store is written to the checkpoint file which
allows for simple model restarting.

3.2 I/O server
In addition to the simulation itself which produces raw (prog-
nostic) results, lower level data is transformed into higher
level (diagnostic) information. This data analysis is a cru-
cial aspect of these models. Traditional approaches inline
the data analytical aspect with the rest of a model and run
it within in a specific timestep after prognostic data has been
generated. However this is not optimal, not just because the
data analytics involves significant I/O so the model can be
stalled waiting for filesystem access, but also because data
analysis work commonly involves intensive communications,
for instance when calculating the average values of a global
field, and ideally one would overlap this with compute.
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module test_component

type(component_descriptor_type) function test_get_descriptor()

test_get_descriptor%name="test_component"

test_get_descriptor%version=0.1

test_get_descriptor%initialisation=>initialisation_callback

test_get_descriptor%timestep=>timestep_callback

end function test_get_descriptor

subroutine initialisation_callback(current_state)

type(model_state_type), target, intent(inout) :: current_state

...

end subroutine initialisation_callback

subroutine timestep_callback(current_state)

type(model_state_type), target, intent(inout) :: current_state

...

end subroutine timestep_callback

end module test_component

Figure 1: Component standard interface

MONC uses an IO server where some of the processes, in-
stead of running the model, are instead dedicated to han-
dling the diagnostic and IO aspects. Typically one core in
a processor will run the IO server and this supports the re-
maining cores running the model. MONC then asynchronously
“fires and forgets” the raw prognostic data to the IO server
for handling. The user configures the IO server via a struc-
tured XML configuration file such that the IO server in-
structs its MONC processes about the specific type of data
required and when. Generic actions for handling this data
are included with the IO server, which can be added to if
required, and are configured in a high level fashion by the
user via the IO server XML configuration file. An example
of this data analysis to produce two diagnostic outputs; the
mean value of a field at each vertical level and secondly the
maximum value of a field at each level. The same, horizon-
tal reduction action is used by, the first instance configured
with the mean operator and the second instance configured
with the max operator. Their high level configuration is all
that is required, with the action and underlying framework
taking care of the tricky and lower level details such as hav-
ing to perform inter IO server communications once local
values have been computed. The MONC IO server uses a
threading approach, where a pool will supply a thread for
handling communications from a model process.

There are a number of alternative IO server implementations
in use by the community and integration with our own IO
server is not mandatory. At the current time of writing, no
existing third party IO servers are entirely satisfactory for
the diagnostics that the community required from MONC.
However, it is important to future proof the model and from
the MONC model’s point of view it is simply a component,
io bridge which will interface with our IO server. Replace-
ment components, such as xios bridge can be written to,
for instance, interface with the XIOS [11] IO server instead.
This illustrates an important aspect of the model, where
following this pluggable pattern has meant that intricate
aspects, such as the handling of diagnostics, is trivial to re-
place rather than being hard coded in the LEM and other
traditional approaches.

Figure 2: MONC scaling experiment

4. PERFORMANCE AND SCALING
Performance and scalability testing has been conducted with
the dry boundary layer test case which models a dry, neutral
boundary layer with a constant geostrophic wind. Experi-
ments have been run on the UK national super computing
service, ARCHER, a Cray XC30. Each run has modelled
10000 simulation seconds and involves dynamics, pressure
solving and the subgrid scheme. The grid is Cartesian, where
the size in the vertical (Z) is 64 and that of X and Y is n2,
where the value of n is determined by the desired global size.

Figure 2 illustrates MONC scaling. From the strong scaling
results it can be seen that, as the number of processes is
increased, the run-time for the simulation decreases. How-
ever, there is only a small run-time improvement (100 sec-
onds) between running on 16384 and 32768 cores. The weak
scaling results, involve 65536 grid points per process (z=64,
x=y=32) and provide a clearer picture of the scaling be-
haviour at larger core counts. The weak scaling run-time
results, up until 8096 cores, are reasonably flat however
when weak scaling at 16384 cores (global problem size of
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1.07 billion global grid points, z=64, x=y=4096) there is a
sharp increase in the run-time which is continued at 32768
cores (2.1 billion global grid points, z=64, x=8192, y=4096.)
From these results it can be seen that the code, configured
in this manner will run at up to 32768 cores and 2.1 billion
grid points, although there is some inefficiency which is im-
pacting the run-time as one reaches the larger core counts.

The results presented in figure 2 use an FFT method for solv-
ing pressure terms and analysis at 16k and 32k cores showed
that this was taking up a large percentage of the overall
run-time. Dealing with pressure terms boils down to solving
the Poisson equation and the traditional method involves
performing a forward FFT, then in Fourier space solving a
vertical ODE before performing a backwards FFT from the
spectral domain back to the spatial one. The MONC FFT
solver decomposes via a pencil, 2D, decomposition and uses
the Fastest Fourier Transformation in the West (FFTW) [5]
library for the actual FFT computational kernel. However,
each FFT requires global all-to-all communications and as
one scales up the fact that each process must communicate
with every other process for every FFT becomes a bottle-
neck.

An iterative solver has also been developed, which solves the
Poisson equation using a Krylov subspace method (ILU pre-
conditioned BiCGStab.) The major benefit of this approach
is that the only global communication required is a reduction
to construct the norm of the residual vector, and all other
communications are localised to nearest neighbours for halo
swapping. These different solvers have been developed as
MONC components, which plug in and out as directed by
the user configuration file, and a weak scaling comparison
between using an FFT solver and an iterative solver to han-
dle the pressure terms for the dry boundary layer test case
are illustrated in figure 3.

The choice between solvers amounts to a trade off between
the lower amount of computation but global all-to-all com-
munication of the FFT solver and more significant amount of
computation but less communication of the iterative solver.
This can be clearly seen in figure 3 where for smaller num-
bers of cores the FFT solver is more efficient. For instance at
1024 processes solving pressure terms via the FFT solver is
130 seconds faster than using the iterative solver. However
as one increases the amount of parallelism this performance
gap decreases until the iterative solver overtakes the FFT
solver at larger core counts and at 32768 cores the iterative
solver reduces the overall run-time by 600 seconds compared
to using the FFT solver. The fact that the FFT solver per-
forms so well up until 8096 cores was a surprise to us and
this is due to a combination of the very efficient interconnect
that can be found on the Cray XC30 along with the highly
tuned computation kernels in FFTW.

The results presented so far have all involved the model
working in double precision. Whilst some areas of the model
must work at this level of precision the pressure solvers do
not necessarily need to, especially when solving to 1e-4 which
we use in this paper. Instead running the solvers in single
precision will not only result in much smaller amounts of
data being sent as messages between processes to improve
the communication aspects, but will also effectively double

Figure 3: FFT vs iterative solver weak scaling

Figure 4: Double vs single precision weak scaling

the number of elements that can be held in the cache hence
improving the computational side of things too. The FFT
and iterative solver components were rewritten in single pre-
cision, plugged into the model and the weak scaling dry
boundary layer test case was rerun on up to 16384 cores.
Figure 4 illustrates a comparison between the two solvers
running at single and double precision for the dry boundary
layer test case. It can be seen that single precision provides
a performance improvement for both the FFT and iterative
solvers but the run-time pattern is similar for single preci-
sion as they do for double precision; the FFT solver looks
favourable initially and then starts to degrade once the cost
of communication becomes significant. At 16384 cores by
adopting a single precision iterative solver over the tradi-
tional FFT solver for pressure terms, this has resulted in an
run-time reduction of 476 seconds. It can be clearly seen
that single precision, if a weak stopping criteria can be tol-
erated, does make a difference and is an important optimisa-
tion that can be easily applied with our plugable component
architecture.

5. CONCLUSIONS AND FURTHER WORK
This paper has described the MONC model, from a software
engineering and architectural point of view, which delivers a
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step change in scalability, performance and capability com-
pared to the existing LEM model. We have described the
component based architecture and discussed how this forms
the basis for a flexible and extensible code base which the
community can easily add their own science to. This simple
conceptual view of the model allows the user to easily config-
ure MONC for their own requirements and ensures that run-
time is not being wasted in areas not required for a specific
simulation. Crucial to performance is how one handles the
data analysis aspects of the model and our approach, using
an IO server approach to effectively separate this from the
raw science, has been introduced. We have demonstrated
scalability up to 32678 cores and discussed some of the cru-
cial factors that impact performance at this core count and
how the architecture of the model is suited for allowing users
to trivially experiment with these aspects.

As the scientific community start to pick up this new model,
add their own components and use it in their research, there
is still further work to be done from a software point of
view. Based upon the results in this paper, it will be inter-
esting to further investigate some of the techniques which
have given performance improvements. A bespoke precon-
ditioner, which exploits the problem’s known mathematical
structure, can be developed which boosts performance of
the solver compared to the generic ILU preconditioner. If
greater accuracy is required then a mixed-precision solver
can be developed, which exploits single precision to achieve
performance with a restart in double precision to achieve the
desired accuracy. An additional benefit of such a solver is
that performance tuning it being done dynamically by the
model, rather than relying upon the user. The component
based architecture also lends itself to providing support for
the model on other platforms, for instance, by developing
a number of GPU based components to take advantage of
these machines.
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