Exascale Computing for Everyone: Cloud-based, Distributed and Heterogeneous

Gordon Inggs, David B. Thomas, Wayne Luk and Eddie Hung

Imperial College London

• HPC trends

• 3 Challenges

• Our approach

• Evaluation

Trend 1: Increasing Heterogeneity

EOL for Von Neumann Frequency Scaling

Rise of Alternatives

Theoretical GFLOP/s

Source: NVIDIA

Multicore CPU and GPU Performance Growth

Rise of Alternatives

Source: Semico Research Corp

FPGA Market Evolution

Trend 2: Infrastructure-as-a-Service

Providers	Туре	Theoretical Peak Performance (<i>TFLOPS</i>)	Rate (\$/hour)
Google Compute Engine	MCPU	~1.6	1.280
Microsoft Azure	MCPU	~1.2	9.65
Amazon Compute Engine	MCPU	1.8	1.856
Amazon Compute Engine	GPU	9.16	2.6

IaaS Performance/Cost Breakdown

Where does all the money go?

3 Challenges

How do I:

- 1. Execute my tasks on distributed, heterogeneous platforms?
- 2. Predict the runtime characteristics of my executions?
- 3. Use my resources efficiently?

The Possibility: Superlinear Performance

The Possibility: Superlinear Performance

The Possibility: Superlinear Performance

Our Approach

Application Domain

- Natural grouping of computational operations and types
- Manifest as Domain Specific Languages and Application Libraries
- Result from empirical software engineering show that typically 10-15 high level operations usually dominate utilisation

3 Solutions

- 1. **Portable Performance**: Exploit domain power law distributions
- 2. **Metric Modelling**: Use domain knowledge to identify and populate models in advance
- 3. Efficient Partitioning: Use metric models and formal optimisation to balance user objectives

Evaluation

Our Domain: Forward Looking Option Pricing

- Finding the value of a derivative contract
- Two Types: Underlyings and Derivatives
- One Operation: Pricing

Monte Carlo Option Pricing

Monte Carlo Pricing as Map Reduce

Our Application Framework: Forward Financial Framework (F³)

- Python-based Application Framework
- Backends open standards & platform tools:
 - POSIX + GCC
 - OpenCL + Vendor tools
 - OpenSPL + Maxeler

```
import ForwardFinancialFramework as F3
```

```
HU_II = F3.Underlying.Heston(0.05,100,0.09,1,-0.3,2,0.09)
E0_1 = F3.Option.European(HU_II,True,100,5)
```

```
P_A = F3.Portfolio([E0_1])
P_A.get_prices()
```

```
print EO_1.price
```

Experimental Tasks

- Portfolio Evaluation:
 - 35 x Black-Scholes Barrier and Asian Options
 - 93 x Heston Model European, Barrier and Asian Option

• Scale:

- 35 MFLOP per simulation of all options
- 10M 100M simulations required
- PetaFLOP scale computation

Experimental Platforms - CPUs

- Tool: GCC 4.8 using POSIX threads
- Local:
 - Desktop Intel Core i7-2600 (7 threads)
 - Local Server AMD Opteron 6272 (64 threads)
 - Local Pi ARM 11 (1 thread)

• Remote:

- Remote Server Intel Xeon E5-2680 (32 threads)
- AWS EC1 & WC1 Intel Xeon E5-2680 (16 threads)
- AWS EC2 & WC2 Intel Xeon E5-2670 (7 threads)

Experimental Platforms - GPUs

- Tool: NVIDIA, Intel and AMD SDKs for OpenCL
- Local:
 - Local GPU 1 AMD Firepro W5000
 - Local GPU 2 NVIDIA Quadro K4000

• Remote:

- Remote Phi Intel Xeon Phi 3120P
- AWS GPU EC and GPU WC NVIDIA Grid GK104

Experimental Platforms - FPGAs

- Tool: Maxeler Maxcompiler and Altera OpenCL SDK
- Local:
 - Local FPGA 1 Xilinx Virtex 6 475T
 - Local FPGA 2 Altera Stratix V D5

Portable Performance

Application Performance (GFLOPs)

Platform

Portable Performance

- Domain Metrics:
 - Makespan (in seconds)
 - Accuracy (size of 95% confidence interval)
- Latency Model: $L(n) = \beta n + \gamma$
- Accuracy Model: $C(n) = \frac{\alpha}{\sqrt{n}}$

Runtime to Benchmark Ratio (Benchmark Paths/Runtime Paths)

- Achieve superlinear performance scaling
- Vary allocation to explore design space
- Three approaches:
 - Heuristic
 - Machine Learning-based
 - Formal Mixed Integer Linear Programming

 $egin{array}{lll} {\displaystyle \mathop{\mathrm{minimise}}\limits_{A\in\mathbb{R}^{\mu imes au}_+} & G_L(A,C) & C\in\mathbb{R}^{ au}_+ \ {\displaystyle \operatorname{subject}} \ {\displaystyle \operatorname{to}} & \displaystyle \sum_{i=1}^{\mu}A_{i,j}=1 & j=1,2,\dots, au \end{array}$

where:

$$egin{aligned} m{G}_{m{L}}(m{A},m{C}) &= \max(m{F}_{m{L}}(m{A},m{C}))\ m{F}_{m{L}}(m{A},m{C}) &= (m{\delta}:m{C}^2\circm{A}+m{\gamma}\circ\lceilm{A}
ceit)\cdotm{1}\ m{\delta}\in\mathbb{R}_+^{\mu imes au},m{\gamma}\in\mathbb{R}_+^{\mu imes au} \end{aligned}$$

• HPC trends and Challenges

- Our domain specific approach:
 Explicit Parallelism
 - Metric Models
 - Formal Optimisation

• Evaluation

Thanks!

