
Exascale Computing for Everyone: 
Cloud-based, Distributed and 

Heterogeneous

Gordon Inggs, David B. Thomas, Wayne Luk 
and Eddie Hung



● HPC trends

● 3 Challenges

● Our approach

● Evaluation



Trend 1: Increasing Heterogeneity



EOL for Von Neumann Frequency Scaling



Source: NVIDIA Multicore CPU and GPU Performance Growth

Rise of Alternatives



FPGA Market Evolution

Rise of Alternatives



Trend 2: Infrastructure-as-a-Service



Providers Type Theoretical 
Peak 
Performance 
(TFLOPS)

Rate
($/hour)

Google 
Compute 
Engine

MCPU ~1.6 1.280

Microsoft 
Azure

MCPU ~1.2 9.65

Amazon 
Compute 
Engine

MCPU 1.8 1.856

Amazon 
Compute
Engine

GPU 9.16 2.6

IaaS Performance/Cost Breakdown



Where does all the money go?



3 Challenges

How do I:
1. Execute my tasks on distributed, 

heterogeneous platforms?

2. Predict the runtime characteristics of my 
executions?

3. Use my resources efficiently?



The Possibility:
Superlinear Performance



The Possibility:
Superlinear Performance



The Possibility:
Superlinear Performance



Our Approach





Application Domain

● Natural grouping of computational 
operations and types

● Manifest as Domain Specific Languages and 
Application Libraries

● Result from empirical software engineering 
show that typically 10-15 high level 
operations usually dominate utilisation



3 Solutions

1. Portable Performance: Exploit domain 
power law distributions

2. Metric Modelling: Use domain knowledge 
to identify and populate models in advance

3. Efficient Partitioning: Use metric models 
and formal optimisation to balance user 
objectives



Evaluation



Our Domain: 
Forward Looking Option Pricing

● Finding the value of 
a derivative contract

● Two Types: 
Underlyings and 
Derivatives

● One Operation: 
Pricing



Monte Carlo Option Pricing



Monte Carlo Pricing as Map Reduce



Our Application Framework:
Forward Financial Framework (F3)

● Python-based Application Framework
● Backends - open standards & platform tools:

○ POSIX + GCC
○ OpenCL + Vendor tools 
○ OpenSPL + Maxeler



Experimental Tasks

● Portfolio Evaluation:
○ 35 x Black-Scholes Barrier and Asian Options
○ 93 x Heston Model European, Barrier and Asian Option

● Scale:
○ 35 MFLOP per simulation of all options
○ 10M - 100M simulations required
○ PetaFLOP scale computation



Experimental Platforms - CPUs

● Tool: GCC 4.8 using POSIX threads 

● Local:
○ Desktop - Intel Core i7-2600 (7 threads) 
○ Local Server - AMD Opteron 6272 (64 threads)
○ Local Pi - ARM 11 (1 thread)

● Remote:
○ Remote Server - Intel Xeon E5-2680 (32 threads)
○ AWS EC1 & WC1 - Intel Xeon E5-2680 (16 threads)
○ AWS EC2 & WC2 - Intel Xeon E5-2670 (7 threads)



Experimental Platforms - GPUs

● Tool: NVIDIA, Intel and AMD SDKs for 
OpenCL

● Local:
○ Local GPU 1 - AMD Firepro W5000
○ Local GPU 2 - NVIDIA Quadro K4000

● Remote:
○ Remote Phi - Intel Xeon Phi 3120P
○ AWS GPU EC and GPU WC - NVIDIA Grid GK104



Experimental Platforms - FPGAs

● Tool: Maxeler Maxcompiler and Altera 
OpenCL SDK

● Local:
○ Local FPGA 1 - Xilinx Virtex 6 475T
○ Local FPGA 2 - Altera Stratix V D5



Portable Performance



Portable Performance



Metric Modeling

● Domain Metrics:
○ Makespan (in seconds)
○ Accuracy (size of 95% confidence interval)

● Latency Model:

● Accuracy Model:



Metric Modeling



Metric Modeling



Metric Modeling



Efficient Partitioning

● Achieve superlinear performance scaling

● Vary allocation to explore design space 

● Three approaches:
○ Heuristic
○ Machine Learning-based
○ Formal Mixed Integer Linear Programming



Efficient Partitioning
Metric that we care about



Efficient Partitioning



Efficient Partitioning



Efficient Partitioning



● HPC trends and Challenges

● Our domain specific approach:
○ Explicit Parallelism
○ Metric Models
○ Formal Optimisation

● Evaluation



Thanks!



Metric Modeling



Efficient Partitioning


