
Paradigm Shift for EXASCALE
Computing

Lets go Parallel

Skevos (Paraskevas) Evripidou skevos@cs.ucy.ac.cy
Dept. of Computer Science

University of Cyprus

Costas Kyriakou eng.kc@fit.ac.cy
Dept of Computer Science and Engineering

Frederic University, Cyprus

EASC 2015 Edinburgh, UK, 21st-23rd April 2015

Lets go Parallel !

 The end of the exponential growth (Dennard Scaling) of
the sequential processors has facilitated the
development of multicore systems.

 Thus, any growth in performance must come from
Parallelism

 However, commercial microprocessor are still using
sequential cores.

 A hybrid Processor based on Data-flow (Data-Driven)
Scheduling and control-flow execution can be low power
and low complexity.
 Could use some of the savings to include more DRAM.

2

Paradigm shift for HPC/Exascale

 The current thinking for building High Performance
Computing (HPC) Systems, is currently based on the
sequential computing (von Neumann model) with the
addition of some parallel constructs (MPI,OpenMP…).
 Critical sections, Barriers, cache coherence etc

 The switch to Multi-core chips has brought the Parallel
Processing into the mainstream.

 Does HPC also needs a more aggressive paradigm
change?

 We are proposing a paradigm shift to a Novel Hybird
system based on the Dynamic Data-Flow model of
computation for Synchronization and the Control Flow
for efficient execution.

3

Data-Driven Scheduling (DDS)

 Data-driven scheduling enforces only a partial ordering
as dictated by the true data-dependencies which is the
minimum synchronization possible.
 This is very beneficial for parallel processing because it

enables it to exploit the maximum possible parallelism.
 DDS has been implemented in the Data-Driven

Multithreading[1] in the form of Software systems with
very good results.

 An eight-core hardware prototype, with Data-Driven
Scheduling has been developed in the TERAFLUX
project [2] (pp 18-23)

[1] Kyriacou et al. Data-Driven Multithreading Using Conventional Microprocessors
10.1109/TPDS.2006.136
[2] http://teraflux.eu/sites/default/files/TERAFLUX-D64-v10.pdf 4

Dependency Graph for Data Driven Scheduling

 Producer-Consumer relationships
 A thread can be scheduled for execution only when all

of its producers have completed their execution (RC=0)

5

Update
Update

Update

RC=0
RC=0 RC=0

Update
Update

Update
RC=0

RC=0

Processor with Data Driven Scheduling

 A thread can be scheduled for execution:
1. Only after all its producers finish their

execution and
2. Move its input data.
3. It is possible to have deterministic

prefetching of the data in cache or
Scratchpad Memory.

 Enables low power and low complexity system.
 With DDS there no need for
 Instruction level parallelism (ILP)
 Out of Order execution (OOE)
 Cache Coherency

6

 In TERAFLUX project we have developed a Multicore
system with 8-cores and a Thread Synchronization
Unit that supports Data-Driven scheduling

7

Is this possible?

Our Motivation: Quotations from Peter Kogge

Our Motivation comes from some of the observations of
Peter Kogge, the leader of the DARPA/USA study group
for exascale computing. We quote verbatim from his article
Next Generation Supercomputers [3] some key
observations:
1. “The practical exaflops-class supercomputer DARPA was

hoping for just wasn't going to be attainable by 2015. In
fact, it might not be possible any-time in the
foreseeable future and the biggest obstacle to that by
far is power.”

2. “So even our Sobering 67 MW power estimate was
overly optimistic. A later study indicated that actual
power would be more like 500 MW.”

[3]http://spectrum.ieee.org/computing/hardware/nextgeneration-supercomputers8

Quotations from Peter Kogge -2-

3. “Realistic applications running on todays supercomputers
typically use only 5 to 10 percent of the machines peak
processing power at any given time. Most of the other
processor cores are just treading water, perhaps
waiting for data they need to perform their next
calculation. It has been proven impossible to keep larger
fraction of the processors working on calculations that
are directly relevant to the applications.

4. And as the number of processor skyrockets, the
fraction you can keep busy at any given can be expected
to plummets.”

9

Data-Flow reply was given back in the future of 1980’s!

Arvind and Iannucci, Data-Flow proponents, have been
warning us since the 1980’s about the two fundamental
issues in Multiprocessing: “long memory latencies and waits
due to synchronization events”. [4]
 In a series of articles they were warning us that the bigger

the machine the bigger the problem with latencies.
 It seems that the observation of P. Koggee confirm that the

communication and synchronization latency of the sequential
model are getting out of hand for HPC/ Exascale machines.

 Data-Flow/Data-driven systems on the other hand have
tolerance to communication and synchronization latencies.

[4] Arvind, R.A. Iannucci, Two Fundamental Issues in Multiprocessing. Proceedings of
DFVLR - Conference 1987. June 25-26, 1987, Bonn-Bad Godesber.

[10

Quotation from: Michael Flynn in his keynote speech at PFL
2012

“ We have multi-threaded, superscalar cores
with limited ILP; worse yet, most of the die
area (80%) is devoted to two or three levels of
cache to support the illusion of sequential
model. And the cache organization doesn’t work
for many data structures…”

11

Architectural support for Data-Driven Scheduling (DDS)

We are addressing the challenges for Exascale with
architectural and organization techniques the three main
challenges:
1. Synchronization latencies: The DDS semantics reduce the

synchronization latencies to the bare minimum. Thus,
increasing the utilization of the machine and at the same
time save energy.

2. Memory: The Scratch-pad based lightweight memory
hierarchy will reduce the amount of memory (SRAM) used
and at the same time reduce power.
 Furthermore, it will improve locality by scheduling threads for

execution in the core that its input data is stored.
3. Power savings: (i) reduce the power by the removing cache

hierarchy (up 8Mb) and replace it with Scratch-pad memory
and (ii) by removing the unnecessary units like the ILP and
OOE . 12

Data-Driven Mulithreading

 The Data-Driven Multithreading (DDM) is a non-blocking
multithreading model that schedules threads based on data
availability on sequential processors.

 A DDM program consists of several threads of instructions,
called DThreads, that have producer-consumer relationships.

 For each DThread, the Thread Synchronization Unit collects
meta-data that enable the management of the dependencies
among the DThreads and determine when a DThread can be
scheduled for execution.

 A Dthread is scheduled for execution only when all it
consumers have complete execution which guarantees that its
input data are available

 The instructions within the DThreads are fetched and
executed by the CPU sequentially in a control-flow manner.

13

SPU

SPE 8

...

BUS

PPU

DDM
Thread

Execution

DDM-VMc
PPE

Runtime

TSU +
S-CachFlow
Execution

The DDM-VMc

PPE

Main Memory

DDM-VMc
SPE Runtime

The DDM-VMs

Core 1 Core 2

...

Bus

Main Memory

Core n
DDM-VMs
Runtime

TSU
+ CacheFlow

DDM Thread
Execution

DDM-VMs
Runtime

TSU Memory
Structures

TSU Memory
Structures

Program
Data

Program
Data

LS

I/OI/O

Network

Other
Nodes

Network

Other
Nodes

DDM Thread
Execution

DDM-VMs
Runtime

SPU

DDM
Thread

Execution

DDM-VMc
SPE Runtime

LS

SPE 1

Cache Hierarchy

14

The Data-Driven Virtual Machine (DDM-VM)

TSU TSU

 The DDM-VM is a virtual machine that supports DDM
execution on homogeneous and heterogeneous multicores

 Virtualizes the parallel resources and handles thread
scheduling, execution instantiation and data prefetching
implicitly

15

 S-CacheFlow an automated and
efficient memory management for
the Cell

 A portion of the LS is pre-allocated
and divided into cache blocks. A
Cache Directory keeps the block’s state

 S-CacheFlow maintains consistency
with DF synchronization

 Overlaps Data transfers and
management with thread execution
to tolerate latencies and achieve
multi-buffering

 Exploits explicit locality

DDM Software CacheFlow for the CELL

Dequeu thread info

Get thread DFPs

Allocate Data in LS

Allocation
Success for all

DFPs

Issue DMA calls:

- Writeback evicted dirty
blocks from LS to MM

- Fetch DFP from MM to LS
- Copy Lookup info to LS

Yes

record all issued DMAs in the
PendingBuffer (PB)
Entry ID = ThreadID

WQ has any
entry Yes

PB has any entry
that all DMAs have

completed

Partial
allocation
Succes

Restore
Cache State

Yes

No

Move to FQ Thead info with
ThreadID = Entry ID

Yes

No

Save Cache State

PrioWQ has
any entryNo

No

Enqueu
thread

in PrioWQ

No

Yes

-Consult Cache
Directory
-Block Eviction
-Block Allocation
-Block Reuse

Execute on SPE

Execute on PPE

16

DDM-VMc Comparison with CellSs (BSC) [6]

0

20

40

60

80

100

120

140

160

0 2 4 6

DDM-VMc

CellSs

0

20

40

60

80

100

120

140

160

0 2 4 6

DDM-MVc

CellSs

0

20

40

60

80

100

120

140

160

0 2 4 6

DDM-VMc

CellSs

MatMult-512 MatMult-1024 MatMult-2048

G
FL

O
Ps

0
10
20
30
40
50
60
70
80
90

100
110

0 2 4 6

DDM-VMc

CellSs

Cholesky-512

0
10
20
30
40
50
60
70
80
90

100
110

0 2 4 6

DDM-VMc

CellSs

G
FL

O
Ps

Cholesky-1024

0
10
20
30
40
50
60
70
80
90

100
110

0 2 4 6

DDM-VMc

CellSs

Cholesky-2048

•MatMult
• An improvement of 80%, 28% & 19%
for the 512,1024 and 2048 sizes

• Cholesky
•An improvement of 213%, 99% & 23%
for the 512,1024 and 2048 sizes

17

 Comparison with Sequoia [Stanford] [8]

• An improvement of 10%, 16% & 11%
for the 512,1024 and 2048 sizes

MatMult
• An improvement of 27%, 22% & 27%
for the 512,1024 and 2048 sizes

Conv2D (9x9 convolution filter)

0
10
20
30
40
50
60
70
80
90

100
110

0 2 4 6

DDM‐VMc

Sequoia

0
10
20
30
40
50
60
70
80
90
100
110

0 2 4 6

DDM‐VMc

Sequoia

0
10
20
30
40
50
60
70
80
90

100
110

0 2 4 6

DDM‐VMc

Sequoia

MatMult-2048MatMult-1024MatMult-512

0
10
20
30
40
50
60
70
80

0 2 4 6

DDM‐VMc

Sequoia

0
10
20
30
40
50
60
70
80

0 2 4 6

DDM‐VMc

Sequoia

0
10
20
30
40
50
60
70
80

0 2 4 6

DDM‐VMc

Sequoia

Number of SPEs Number of SPEs Number of SPEs

Conv2D-512 Conv2D-1024 Conv2D-2048

[8] Arandi, Evripidou: DDM-VMc: the data-driven multithreading virtual machine for the cell processor.
HiPEAC 2011

DDM-VMs vs MPI for Cholesky

 For this comparison we have used 1, 2 and 4 AMD Opteron
6276 machines with a total of 128 cores

 For 32 cores DDM gets speedup close to 25 and MPI around
11.

 Overall DDM achieves speedup slightly above 115 where the
MPI achieves only 4.

 We believe this due to the fact that the Cholesky algorithm
has very complex data dependencies that cannot be handled
well in the MPI implementation and the use of barriers.

18

[?] http://teraflux.eu/sites/default/files/TERAFLUX-D64-v10.pdf

 In TERAFLUX project we have developed a Multicore
system with 8-cores and a Thread Synchronization
Unit that supports Data-Driven scheduling

19

DDM Multi-core with TSU and caches

Thread Synchronization Unit (TSU)

 The DDM TSU provides the functionality of Dynamic
Data-Flow concurrency on sequential Processors
 Graph Memory (GM):Producer consumer Thread

dependencies
 Synchronization Memory (SM): Number of Producers
 Ready (RQ) and Acknowledgment (AQ) Queues

20

TSU: Dynamic Hardware Support for DDM

21

• Remove Thread
Template

DDM Commands
• Update
• Update Cons
• Store Thread

Template
• Remove Thread

Template

Thread Template
• Thread ID (TID)
• Instruction Frame

Pointer (IFP)
• Scheduling Policy …

Ready Counts
for each
Dthread

• Context

Ready
Thread
• TID
• IFP
• Context

Performance Evaluation

22

 In TERAFLUX project we have developed a Multicore
system with 8-cores and a Thread Synchronization
Unit that supports Data-Driven scheduling

23

Multi-core with TSU and caches

Replace the Cache hierarchy with an
automated scratchpad memory

24

 We have developed such a system in software for the CELL
processor[8]

Network Interface
Unit (NIU) will be
added to the TSU

Conclusions

 The switch to Multi-core chips has brought the
Parallelism in the mainstream of computing
 Will the same happened with HPC?

 We are proposing a paradigm shift to a Novel Hybrid
system based on the Dynamic Data-Flow model of
computation for Synchronization and the Control Flow
for efficient execution.

 A Multithreaded Processor with Data-Driven Scheduling
provides a partial ordering of tasks as determine by the
true data-dependencies

 DDS enables deterministic prefetching to Scratch-pad
memories, thus reducing drastically the SRAM needs

25

Conclusions -2-

 A thread can be scheduled for execution:
1. Only after all its producers finish their execution and
2. Move its input data.
3. It is possible to have deterministic prefetching of the data

in cache or Scratchpad Memory.
 The Data-Driven semantics Enables low power and low

complexity system.
 With DDS there no need for
 Instruction level parallelism (ILP)
 Out of Order execution (OOE)
 Cache Coherency

26

Conclusions -3-

 Do we need 160 million cores that are only fully utilized
only 5-10% at the time and call it EXAFLOP?
 P. Koggee expects this to plummets for EXAFLOP!

 What if our design with 80 million cores with 10-20% fully
utilized

 What if our design with 40 million cores with 20-40%
fully utilized
 Will this be EXAFLOP?

27

