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Lets go Parallel !

 The end of the exponential growth (Dennard Scaling) of 
the sequential processors has facilitated the 
development of multicore systems. 

 Thus, any growth in performance must come from 
Parallelism

 However, commercial microprocessor are still using 
sequential cores.

 A hybrid Processor  based on Data-flow (Data-Driven) 
Scheduling and control-flow execution can be low power 
and low complexity.
 Could use some of the savings to include more DRAM. 
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Paradigm shift for HPC/Exascale

 The current thinking for building High Performance 
Computing (HPC) Systems, is currently based on the 
sequential computing (von Neumann model) with the 
addition of some parallel constructs (MPI,OpenMP…).
 Critical sections, Barriers, cache coherence etc

 The switch to Multi-core chips has brought the Parallel 
Processing into the mainstream. 

 Does HPC also needs a more aggressive paradigm 
change?

 We are proposing a paradigm  shift to  a Novel Hybird
system based on the Dynamic Data-Flow model of 
computation for Synchronization and the Control Flow 
for efficient execution.
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Data-Driven Scheduling (DDS)

 Data-driven scheduling enforces only a partial ordering 
as dictated by the true data-dependencies which is the 
minimum synchronization possible.
 This is very beneficial for parallel processing because it 

enables it to exploit the maximum possible parallelism.
 DDS has been implemented in the Data-Driven 

Multithreading[1] in the form of Software systems with 
very good results.

 An eight-core hardware prototype, with Data-Driven 
Scheduling  has been developed in the TERAFLUX 
project [2] (pp 18-23)

[1] Kyriacou et al. Data-Driven Multithreading Using Conventional Microprocessors 
10.1109/TPDS.2006.136
[2] http://teraflux.eu/sites/default/files/TERAFLUX-D64-v10.pdf 4



Dependency Graph for Data Driven Scheduling

 Producer-Consumer relationships
 A thread can be scheduled for execution only when all 

of its producers have completed their execution (RC=0)
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Processor with Data Driven Scheduling

 A thread can be scheduled for execution:
1. Only after all its producers finish their 

execution and
2. Move its input data.
3. It is possible to have deterministic 

prefetching of the data in cache or 
Scratchpad Memory.

 Enables low power and low complexity system. 
 With DDS there no need for
 Instruction level parallelism (ILP)
 Out of Order execution (OOE)
 Cache Coherency 
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 In TERAFLUX project we have developed a Multicore 
system with 8-cores and a Thread Synchronization 
Unit that supports Data-Driven scheduling
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Is this possible?



Our Motivation:  Quotations from Peter Kogge

Our Motivation comes from some of the observations of 
Peter Kogge, the leader of the DARPA/USA study group 
for exascale computing. We quote verbatim from his article 
Next Generation Supercomputers [3] some key 
observations:
1. “The practical exaflops-class supercomputer DARPA was 

hoping for just wasn't going to be attainable by 2015. In 
fact, it might not be possible any-time in the 
foreseeable future and the biggest obstacle to that by 
far is power.”

2. “So even our Sobering 67 MW power estimate was 
overly optimistic. A later study indicated that actual 
power would be more like 500 MW.”

[3]http://spectrum.ieee.org/computing/hardware/nextgeneration-supercomputers8



Quotations from Peter Kogge -2-

3. “Realistic applications running on todays supercomputers 
typically use only 5 to 10 percent of the machines peak 
processing power at any given time. Most of the other 
processor cores are just treading water, perhaps 
waiting for data they need to perform their next 
calculation. It has been proven impossible to keep larger 
fraction of the processors working on calculations that 
are directly relevant to the applications.

4. And as the number of processor skyrockets, the 
fraction you can keep busy at any given can be expected 
to plummets.”
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Data-Flow reply was given back in the future  of  1980’s!

Arvind and Iannucci, Data-Flow proponents, have been 
warning us since the 1980’s about the two fundamental 
issues in Multiprocessing: “long memory latencies and waits 
due to synchronization events”. [4]
 In a series of articles they were warning us that the bigger 

the machine the bigger the problem with latencies. 
 It seems that the observation of P. Koggee confirm that the 

communication and synchronization latency of the sequential 
model are getting out of hand for HPC/ Exascale machines. 

 Data-Flow/Data-driven systems on the other hand have 
tolerance to communication and synchronization latencies.

[4] Arvind, R.A. Iannucci, Two Fundamental Issues in Multiprocessing. Proceedings of 
DFVLR - Conference 1987. June 25-26, 1987, Bonn-Bad Godesber.

[10



Quotation from: Michael Flynn in his keynote speech at PFL 
2012

“ We have multi-threaded, superscalar cores 
with limited ILP; worse yet, most of the die 
area (80%) is devoted to two or three levels of 
cache to support the illusion of sequential 
model. And the cache organization doesn’t work 
for many data structures…”
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Architectural support for Data-Driven Scheduling (DDS)

We are addressing the challenges for Exascale with 
architectural and organization techniques the three main 
challenges:
1. Synchronization latencies: The DDS semantics reduce the 

synchronization latencies to the bare minimum. Thus, 
increasing the utilization of the machine and at the same 
time save energy.

2. Memory: The Scratch-pad  based lightweight memory 
hierarchy will reduce the amount of memory (SRAM) used 
and at the same time reduce power. 
 Furthermore, it will improve locality by scheduling threads for 

execution in the core that its input data is stored.
3. Power savings: (i) reduce the power by the removing cache 

hierarchy (up 8Mb) and replace it with  Scratch-pad memory 
and (ii) by removing the unnecessary units like the ILP and 
OOE . 12



Data-Driven Mulithreading

 The Data-Driven Multithreading (DDM) is a non-blocking 
multithreading model that schedules threads based on data 
availability on sequential processors.

 A DDM program consists of several threads of instructions, 
called DThreads, that have producer-consumer relationships. 

 For each DThread, the  Thread Synchronization Unit collects 
meta-data that enable the management of the dependencies 
among the DThreads and determine when a DThread can be 
scheduled for execution.

 A Dthread is scheduled for execution only when all it 
consumers have complete execution which guarantees that its 
input data are available

 The instructions within the DThreads are fetched and 
executed by the CPU sequentially in a control-flow manner. 
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The Data-Driven Virtual Machine (DDM-VM)

TSU TSU

 The DDM-VM is a virtual machine that supports DDM 
execution  on homogeneous and heterogeneous multicores

 Virtualizes the parallel resources and handles thread 
scheduling, execution instantiation and data prefetching
implicitly
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 S-CacheFlow an automated and 
efficient memory management for     
the Cell

 A portion of the LS is pre-allocated
and divided into cache blocks. A  
Cache Directory keeps the block’s state

 S-CacheFlow maintains consistency
with DF synchronization

 Overlaps Data transfers and  
management with thread execution 
to tolerate latencies and achieve 
multi-buffering

 Exploits explicit locality

DDM Software CacheFlow for the CELL
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DDM-VMc Comparison with CellSs (BSC) [6]
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•MatMult
• An improvement of  80%, 28% & 19% 
for the 512,1024 and 2048 sizes

• Cholesky
•An improvement of 213%, 99% & 23% 
for the 512,1024 and 2048 sizes
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 Comparison with Sequoia [Stanford] [8]

• An improvement of  10%, 16% & 11% 
for the 512,1024 and 2048 sizes

MatMult
• An improvement of 27%, 22% & 27% 
for the 512,1024 and 2048 sizes

Conv2D (9x9 convolution filter)
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[8] Arandi, Evripidou: DDM-VMc: the data-driven multithreading virtual machine for the cell processor.
HiPEAC 2011



DDM-VMs vs MPI for Cholesky

 For this comparison we have used 1, 2 and 4 AMD Opteron 
6276 machines with a total of 128 cores

 For 32 cores DDM gets speedup close to 25 and MPI around 
11. 

 Overall  DDM  achieves speedup slightly above 115 where the 
MPI achieves only 4. 

 We believe this due to the fact that the Cholesky algorithm 
has very complex data dependencies that cannot be handled 
well in the MPI implementation and the use of barriers.
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[?] http://teraflux.eu/sites/default/files/TERAFLUX-D64-v10.pdf



 In TERAFLUX project we have developed a Multicore 
system with 8-cores and a Thread Synchronization 
Unit that supports Data-Driven scheduling
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DDM Multi-core with TSU and caches



Thread Synchronization Unit (TSU)

 The DDM TSU provides the functionality of Dynamic 
Data-Flow concurrency on sequential Processors
 Graph Memory (GM):Producer consumer Thread 

dependencies
 Synchronization Memory (SM): Number of Producers
 Ready  (RQ) and Acknowledgment (AQ) Queues
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TSU: Dynamic Hardware Support for DDM
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Performance Evaluation
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 In TERAFLUX project we have developed a Multicore 
system with 8-cores and a Thread Synchronization 
Unit that supports Data-Driven scheduling
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Multi-core with TSU and caches



Replace the Cache hierarchy with an 
automated scratchpad memory
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 We have developed such a system in software for the CELL 
processor[8]

Network Interface 
Unit (NIU) will be 
added to the TSU



Conclusions

 The switch to Multi-core chips has brought the 
Parallelism in the mainstream of computing
 Will the same happened with HPC? 

 We are proposing a paradigm  shift to  a Novel Hybrid 
system based on the Dynamic Data-Flow model of 
computation for Synchronization and the Control Flow 
for efficient execution.

 A Multithreaded Processor with Data-Driven Scheduling 
provides a partial ordering of tasks as determine by the 
true data-dependencies

 DDS enables deterministic prefetching to Scratch-pad 
memories, thus reducing drastically the SRAM needs
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Conclusions -2-

 A thread can be scheduled for execution:
1. Only after all its producers finish their execution and
2. Move its input data.
3. It is possible to have deterministic prefetching of the data 

in cache or Scratchpad Memory.
 The Data-Driven semantics Enables low power and low 

complexity system. 
 With DDS there no need for
 Instruction level parallelism (ILP)
 Out of Order execution (OOE)
 Cache Coherency 
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Conclusions -3-

 Do we need 160 million cores that are only fully utilized 
only 5-10% at the time and call it EXAFLOP?
 P. Koggee expects this to plummets  for EXAFLOP!

 What if our design with 80 million cores with 10-20% fully 
utilized

 What if our design with  40 million cores with 20-40% 
fully utilized
 Will this be  EXAFLOP?
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