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* Swift: task-based hydrodynamics and gravity

related talks/posters:
keynote: Simon Portegies-Zwart:

Massively-parallel GPU-accelerated galaxy simulation

Poster: Karakasis et al
Gadget on the Mike

Several talks/posters on SPH (hydrodynamics

scheme)

.€.8 Guo: Exploring the Memory-Efficient Implementation Model for
Incompressible Smoothed Particle Hydrodynamics(ISPH)
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Sml|lng ga|aXieS (because they contain dark matter)
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Abundance

1CC

versus dark matter halo mass function
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Physics of galaxy formation 1

Aims:

2
*How do galaxies form!? Pe
*How do they evolve!
*Which physical te! .
ich physical processes operate? 10000 *

Basic paradigm
(White & Rees, White & Frenk) 20 kpc

*Dark haloes form
*Cool(ed) gas forms discs
*Discs fragment to form stars x 10000

>

Multi-scale/complex/rich problem 200 Mpc

1CC Institute for Computational Cosmelogy 7 4




Galaxy stellar mass function versus dark matter halo mass function
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Current state of the art: Eagle simulations (Schaye +15)

http://icc.dur.ac.uk/Eagle/

The EAGLE simulations

EVOLUTION AND ASSEMBLY OF GALAXIES AND THEIR ENVIRONMENTS
A project of the Virgo consortium

Z = 19.9 Visible components
L = 25.0 cMpc COM
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Methods: algorithms and implementations

* gravity (from gas, stars and dark matter)
* hydrodynamics (gas accretion, gas cooling)

Ramses (Teyssier) B

dp _ O
it =gt ~ V' Vp=—pVV

Eulerian hydrodynami (AMR cde)

Gadget (Springel) | [Highly optimised algorithms - minimise calculations!

Lagrangian hydrodynamics (SPH codes)

e for Computational Cosmelogy 14 Tom Theuns



Mon, Not. R, Astron, Soc, 364, 11051134 (2005)

Lagrangian hydrodynamics
The cosmological simulation code GADGET-2

Volker Springel*

Max-Planck-Institus fiir Astrophysik, Karl-Schwarzschild-Strafle 1, 85740 Garching bet Miinchen, Germany

p(r;) = D ;m; W(lr; —rj, hy)

density is found by summing weighted mass over neighbours
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Tree calculation (in 2 dimensions)
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z = 48.4 Build-up of dark matter halo T = 0.65 Gyr

Td — il
d (eT:
typical dynamical time of a particle is 20 times longer than

particle in a halo,and 1000 times that of a particle in a disc

1500 kpc Springel+08




pri) = m; W([ri —x;l, hy)

* Amount of memory per particle is large (many diagnostic
properties stored, such as metallicity, star formation rate,
etc), little computational time spent on interaction
between two particles

* Runs require a lot of memory (and hence many cores/
nodes): currently 10 billion particle runs

* Lots of time spent in finding neighbours: leads to load-
imbalance

BCC Institute for Computational Cosmelogy 19 Tom Theuns
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Load (im) balance in gravity calculation (Gadget-2)

2 NTask = 24
1x10° e e EERREEEES PR
: NTask=24 :
Bx10% —
—————— treew :
— B treew+treeimb 3
r m Z 2z
el 5 3
D (10* 2
El -
= 5 i
' : B e 7
Bqot tree walk + imbalance .
. TS E
o) tree walk
¥ 10t .
Dl e e

0,8321 0.833 0.834 0.835 0.836 0.837
simulation time

Institute for Computational Cosmelogy 2! Tom Theuns

1CC




Time (minutes)

Time (minutes)
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15003 Eagle reference run
4096 cores

On 4096 cores, wallclock = 1107.2 hours to redshift 0.00, timestep = 3.13008e+06

sph
treeimba
ens” treegrav
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MiSC /gl treegrav 14.2% @B domain 17.8% Bl cagle sfr 0.8%
B treeimbal 7.8% B kicks 2.7% Bl cagle star density 15.3%
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Task based parallelism for SPH/Gravity

SWIFT: Fast algorithms for multi-resolution SPH on
multi-core architectures

Pedro Gonnet*, Matthieu Schaller!, Tom Theuns'?, Aidan B. G. Chalk*

EFFICIENT AND SCALABLE ALGORITHMS FOR SMOOTHED PARTICLE
HYDRODYNAMICS ON HYBRID SHARED/DISTRIBUTED-MEMORY
ARCHITECTURES

PEDRO GONNET*

Gonnet Schaller Chalk
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(Pete Beckman this morning)

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 1oth, 2013 2/22
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51M particle EAGLE box (z = 0.5) SPH-only simulation on the cosmAs cluster.
SWIFT: Strong scaling up to 1024 cores with 60% parallel efficiency.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 1oth, 2013 2/22




computational domain

choose cell to
be larger than
distance to
neighbours

p(ri) =D, m; W(|r; —r;l, hy)
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Task typel Task typell

Qe A

pri) = 3 ;m; W(lri — 1, hi)

re-use particle data whenever possible in next task

BCC Institute for Computational Cosmelogy 29 Tom Theuns




QuickSched library

Task-based parallelism <

B
P Durham

Main concepts University

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.

We first reduce the problem to a set of
inter-dependent tasks.

For each task, we need to know:

Which tasks it depends on,
Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 7/22
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QuickSched library

Task-based parallelism <

B
P Durham

Main concepts University

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.

We first reduce the problem to a set of
inter-dependent tasks.

For each task, we need to know:

Which tasks it depends on,
Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

ParMETIS library distributes tasks

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 7/22




MPI implementation uses asynchronous comms

node |

integrator

force

ghost

density

sort

particles from neighbour cell on other node

imported by comm task
BCC Institute for Computational Cosmology 37 Tom Theuns



QuickSched library

tasks are distributed over resources to maximise
throughput (and not spatially)

1CC
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Sorting particles in cells cuts down on unnecessary
neighbour testing

o | o ® ’ -0--7000--?-{?--...
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51M particle EAGLE box (z = 0.5) SPH-only simulation on the cosmAs cluster.
SWIFT: Strong scaling up to 1024 cores with 60% parallel efficiency.
~ 40x faster than GADGET.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 1oth, 2013 2/22




Swift tasks
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Single GPU results for Barnes-Hut

_ Task plot for Barnes-Hut gravity tree
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Aidan B. G. Chalk, Pedro Gonnet, Matthieu Schaller, Tom Theuns: Using CUDA to accelerate

SPH-based cosmological simulations 11th February 2015 8/8



Timings of gravity part (Barnes-Hut) of code

Simulation type 1M parts | 3M parts | 10M parts
1 CPU with Quicksched 15.9s 50.5s 174.5s
16 CPUs with Quicksched 1.217s 3.489s 12.0s
.239s O77s . S
GTX690 GPU Single precision | 0.116s 0.344s 1.414s
Tesla K40c GPU 0.099s 0.271s 2.025s
Gadget-2, 16 CPUs 2.25s 6.59s 47.91s
Bonsai-2 GTX690 0.069s 0.228s Error.
* QuickSched implementation uses quadrupoles, Gadget uses
monopoles
* Bonsai 2:

BCC Institute for Computational Cosmology 43 Tom Theuns



Contents:

* Introduction: cosmological simulations: aims and methods
* computational challenges

* load - (im) balance

* Swift: task based hydrodynamics and gravity

Future:

* vectorisation of interaction kernels

* optimizing cache performance

* optimizing MPI performance

* self-tuning strategy to exploit hardware specifics

1CC Institute for Computational Cosmelogy 44 Tom Theuns
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