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Contents:

• Introduction: cosmological simulations: aims and methods	

• computational challenges	

• load - (im) balance	

• Swift: task-based hydrodynamics and gravity

related talks/posters:	

keynote: Simon Portegies-Zwart: 	

   Massively-parallel GPU-accelerated galaxy simulation	


Poster: Karakasis et al	

    Gadget on the Mike	


Several talks/posters on SPH (hydrodynamics 
scheme)	

	
 .e.g Guo: Exploring the Memory-Efficient Implementation Model for 
Incompressible Smoothed Particle Hydrodynamics(ISPH)
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Introduction
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Virgo projectmovie: Volker Springel

obse
rve

d

Mille
nn

ium



Tom Theuns5 SDSS J1038+4849

Smiling galaxies (because they contain dark matter)
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Galaxy stellar mass function versus dark matter halo mass function
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Physics of galaxy formation

Basic paradigm

Aims:

•How do galaxies form?	

•How do they evolve?	

•Which physical processes operate?

•Dark haloes form	

•Cool(ed) gas forms discs	

•Discs fragment to form stars

Multi-scale/complex/rich problem

(White & Rees,  White & Frenk)
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Galaxy stellar mass function versus dark matter halo mass function

feedback from SNe?

feedback from AGN?
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Gas column perpendicular to a galactic disc
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Current state of the art: Eagle simulations (Schaye +15)

http://icc.dur.ac.uk/Eagle/
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Cosma 5 DataCentric

11 7 M CPU hours Schaye +15
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The Hubble Sequence

Schaye +15
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Methods: algorithms and implementations

• gravity (from gas, stars and dark matter)	

• hydrodynamics (gas accretion, gas cooling)

Lagrangian hydrodynamics (SPH codes)

Eulerian hydrodynamics (AMR codes)

 Ramses (Teyssier)

Gadget (Springel) Highly optimised algorithms - minimise calculations!
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Lagrangian hydrodynamics

density is found by summing weighted mass over neighbours

Gravity:

nearby force calculated from tree

distant force from mesh (FFTs)
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Tree calculation (in 2 dimensions)
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typical dynamical time of a particle is 20 times longer than  
particle in a halo, and 1000 times that of a particle in a disc

Springel+08

Build-up of dark matter halo
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• Amount of memory per particle is large (many diagnostic 
properties stored, such as metallicity, star formation rate, 
etc), little computational time spent on interaction 
between two particles	


• Runs require a lot of memory (and hence many cores/
nodes): currently 10 billion particle runs 	


• Lots of time spent in finding neighbours: leads to load-
imbalance
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tree walk + imbalance
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Load (im) balance in gravity calculation (Gadget-2)
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Timings of pkdgrav on G-halo from Stadel

Imbalance
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15003 Eagle reference run
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Gonnet Schaller Chalk

Task based parallelism for SPH/Gravity 



Introduction
This talk in a nutshell
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Gadget−2

51M particle EAGLE box (z = 0.5) SPH-only simulation on the COSMA5 cluster.

SWIFT: Strong scaling up to 1024 cores with 60% parallel efficiency.
⇠ 40⇥ faster than GADGET.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 2/22
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computational domain

choose cell to 
be larger than 
distance to 
neighbours h
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Task type1 Task type1I

i i

j

re-use particle data whenever possible in next task



Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.
We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 7/22

QuickSched library
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QuickSched library

ParMETIS library distributes tasks
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MPI implementation uses asynchronous comms

node 1 node 2

particles from neighbour cell on other node 
imported by comm task
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QuickSched library

tasks are distributed over resources to maximise 
throughput (and not spatially)
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Sorting particles in cells cuts down on unnecessary	

neighbour testing
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Task plot for Barnes-Hut gravity tree

purple=data movement

red, green, blue=different tasks big tasks to be moved
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Timings of gravity part (Barnes-Hut) of code

• QuickSched implementation uses quadrupoles, Gadget uses 
monopoles	


• Bonsai 2: 
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Contents:

• Introduction: cosmological simulations: aims and methods	

• computational challenges	

• load - (im) balance	

• Swift: task based hydrodynamics and gravity

Future: 

• vectorisation of interaction kernels	

• optimizing cache performance	

• optimizing MPI performance 	

• self-tuning strategy to exploit hardware specifics
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