Argonne

NATIONAL LABORATORY

AR
Y S I
N Y

@ - Massachusetts
Institute of
Technology

Ronald Rahaman, David Medina, Amanda Lund,
John Tramm, Tim Warburton, Andrew Siegel

Portability and Performance of Nuclear Reactor

Simulations on Many-Core Architectures

Codesign In Action

Nuclear
Engineering

0 Contributions from specialists . h
in entire HPC stack Hardware Programming
. . . Models
0 Birdectional involvement
0 For example, programming \ ,
models inform design of apps

AND vice versa.
Systems

0 Center for Exascale

Simulation of Advanced
Reactors (CESAR)

Many-core Programming Models

0 For programming models...
o Can diverse architectures be

\
programmed with a common
set of abstractions?
OCCA
0 For our apps...

O What changes are needed to

accommodate the different
programming models?

0 What are the performance
and portability tradeoffs?

OCCA

00 Different backends are
abstracted into common
kernel languages.

Pthreads x86

0 Front-end language calls _
kernel through OCCA API.

0 Kernels can be written in

Xeon

OpenMP = phi

PRESEN

a number of languages. H occaap % o
0 OCCA parser creates IR I
and invokes backend e - RN o o
compiler. .
julia — =

0 We'll see examples later!

- Nuclear Reactor Simulation

...especially neutron transport

Some Aspects of Reactor Simulation
I

Neutron Transport Fluid Dynamics

Fission in fuel,
mcludmg heat
generation.

0 Distribution of
heat in liquid
coolant.

0 Used for LOTS of
other applications.

Also used for
medical imaging,
radiation
shielding, etc.

= = - - = - =

, Iié"‘ﬂitr

Neutron Cross-sections
-5
Neutron cross sections are physical quantities that describe the interaction of

neutrons with matter...

0 Microscopic cross-sections
13 . " .
(“micro xs”) describe the
interaction of an incident

neutron with a target nuclide.

O ~ the probability that a
neutron interact with the
given nuclide

0 Depend on neutron energy
and nuclide identity

Macroscopic cross-sections (“macro
xs”) describe the interactions of a
neutron as it travels through a
material composed of many nuclides.

0 ~ the mean free path of of a neutron
through the material

o Depend on neutron energy and
material composition

0 Density-weighted average of
component micro xs’s

Described for different interactions (absorption, elastic scattering, fission, etc)

Cross-section Representations
I
O Micro XS 10" ¢

3
o Continuous energy: pointwise o
defined on a dense, non- R
uniform energy grid. e |
210" + AN b
O Energy groups: energy space ¢ ~ :
is more coarsely discretized. 8 | :
’f 10 E ‘.\ ﬁ ’
% ‘\\‘ OI 3 :
8 \“\ f? E If:' .
0 h o) (vt o
0 Macro XS RN L1t S
o ad f’i \ . 3'
O For continuous-energy, must §10_1_ ¥ RN
be computed at runtime. 3
c
O For energy groups, can be 102l
precomputed.
107 . - '
10 " 10 ° SfudJnQSGr:IonoIMATLAB

neutron energy (MeV)

Many methods for neutron transport, including...
N

Monte Carlo (MC) Method of Characteristics (MOC)

0 Obtain estimators from many 0 Attenuate neutron fluxes across
independent neutron histories. independent spatial tracks.

0 Energy space is continuously-valued. 0 Energy space is discretized.

0 Closer to realistic, hi-fi simulations. 0o 3D MOC is still under development.

0 Memory bound and convergence 0 Higher computational intensity and
requires a large number of histories. is easier to vectorize.

0 Lots of inherent parallelism in both methods!

- Monte Carlo

Monte Carlo Algorithm and Apps

-]
. 0 Micro XS lookups consume up
for each neutron in batch to 80% of total runtimel
repeat . .) O Particle state is unpredictable.
for each nuclide in local material)
)) O Lookups have poor locality.
for each interaction type
i i O Latency-bound for few cores,
lookup discrete-valued micro xs approaches bandwidth limit for
interpolate continuously-valued micro xs many cores.
accumulate micro xs into macro xs O Mini-app (XSBench) can:
update neutron’s position and energy O abstract away physics
until neutron is absorbed or escapes boundaries O simulate xs lookups

O faithfully replicate
performance of full app

OpenMP and OpenACC

#tpragma omp parallel private(...), shared(...)

#pragma acc data copyin(...), copy(...) O Coarse-grained
parallelism over
#pragma omp for schedule(dynamic) neutron |OOp.

#pragma acc kernels loop gang, vector
for(int i = @; i < n_neutrons; i++)

{ 0 In OpenMP,
Fpragma acc loop seq parallelizing only the
for (int nuc_id=0; nuc_id < num_nucs(material); nuc_id++) outer Ioop performs
{
... get bounding gridpoints for this nuclide’s micro_xs (hi, 1lo) ... better than nested

// Get interpolation factor pardllellsm.

f = (hi->energy - p_energy) / (hi->energy - lo->energy)

// For each interaction, interpolate continuous micro-xs

macro_xs[@] += conc * (hi->micro xs[@] - f * (hi->micro_xs[@] - lo->micro_xs[0])

macro_xs[1] += conc * (hi->micro_xs[1] - f * (hi->micro_xs[1] - lo->micro_xs[1]) 0 In OpenACC, the

macro_xs[2] += ... performance is also
macro_xs[3] += ... better when the inner
macro_xs[4] += ... loops are sequential.

CUDA

__global__ void lookup_kernel(...)
{

int global_id = blockIdx.x * gridDim.x + threadIdx.x 0 Also coarse_qulned'
if (global id < t
(- (Blobalid «nneutrons) 0 Each thread performs
for (int nuc_id=0; nuc_id < num_nucs(material); nuc_id++) a different |ookup.
{

. get bounding gridpoints for this nuclide’s micro_xs (hi, 1lo) ... u HOW dO we exploi’r

__ldg(lo->energy); _ ldg(lo->micro_xs[1]); _ ldg(lo->micro_xs[2]); ... cqquiliﬁes of GPU?
__ldg(hi->energy); _ ldg(hi->micro_xs[1]); _ 1ldg(hi->micro_xs[2]); ... Th d I d
O reads stall on data
// Get interpolation factor .
double f = (hi->energy - p_energy) / (hi->energy - lo->energy) dependenCIeS (nOt
// For each interaction, interpolate continuous micro-xs memory CICCGSS).
macro_xs[0] +=
conc * (hi->micro_xs[@] - f * (hi->micro_xs[@] - lo->micro_xs[@]); 0 Queuve up many

macro_xs[1] += ... memory accesses

} | before the data are

X needed.

OCCA

for (outer_id=0; outer_id < outer_dim; outer_ id++; outero)

for (inner_id=0; inner_id < inner_dim; inner_id++; inner®9)
{

int global_id = outer_id * outer_dim + inner_id;

if (global id < n_neutrons)

{

for (int nuc_id=0; nuc_id < num_nucs(material); nuc_id++)
{

. get bounding gridpoints for this nuclide’s micro_xs (hi, 1lo) ...

directLoad(lo->energy); directLoad(lo->micro xs[1]);
directLoad(hi->energy); directLoad(hi->micro xs[1]);

// Get interpolation factor
double f = (hi->energy - p_energy) / (hi->energy - lo->energy)
// For each interaction, interpolate continuous micro-xs
macro_xs[0] +=
conc * (hi->micro_xs[@] - ¥ * (hi->micro_xs[@] - lo->micro_xs[@]);
macro_xs[1] += ...;

Similar to CUDA, but
parallelism is more
explicit.

When compiled for
OpenMP, outer and inner
loops are coalesced.

When compiled for CUDA,
outer is mapped to blocks
and inner loop is mapped
to threads.

OCCA translates to
coarse-grained
parallelism for both
backends.

XSBench Performance

Xeon Sandy Bridge
(2X E5-2650, 32 threads)

Xeon Haswell
(2X E5-2699, 72 threads)

Tesla K40m

—
-

0 100 200 300
Time per lookup (ns)

400

500

® OpenMP

“OCCA

“ CUDA

® OpenACC

- Method of Characteristics

...different portability and performance...

Geometric Decomposition in 3D MOC

Stacked 2D Planes

Track

Segments

Segments

Attenuate Flux
over

Energy Groups

MOC Algorithm and Apps

O The larger app (SimpleMOCQ)
simulates 3D geometry, including
domain decomposition.

for all 2D geometric tracks
for all polar angles
for all segments in track

O The proxy-app (SimpleMOC-kernel)
for all stacked 2D planes randomly selects segments and

for all energy groups proceeds similarly.

attenuate flux

0 Attenuating flux across energy
groups offers opportunities for SIMD.

OpenMP

]
#pragma omp for schedule(dynamic, 100) : - H S
for (long seg = @; seg < n_segments; seg++) O Flne gralned para||e||5|m.
{

0 Outer loop (segments) is

#pragna vector parallelized with OpenMP.
for (int g=0; g < energy_groups; g++)

. 0 Inner loop (energy groups) is
sigT[g] . . .
tau[g] = sigT[g] * ds; fissioned and vectorized.

igT2{g] = sigT[g] * sigT[gl;
sierelel = sietlel T sietlel o ~50 FLOPS to attenuate flux,
fissioned into 12 SIMD loops.

#r.);‘agma vector

1{‘0r‘ (int g=0; g < energy_groups; g++) O Intel compiler can vectorize all
flux_integral[g] = (g@[g] * tau[g] + (sigT[g] * ...) 12 Ioops.

} 0 GNU compiler can vectorize 3

} loops.

CUDA

lobal _ void kernel(... o« e .
—E— () d 0 Similar parallelism, expressed

differently...

int blockId = blockIdx.y * gridDim.x + blockIdx.Xx;

if (blockId >= n_segments) return;
o Ovuter loop (segments) is

// It implied that each thread is an energy group

// int egroup = threadIdx.x mapped to blocks
// SIMT over energy groups is implied O Inner Ioop (energy gI’OUpS) are
float tau = sigT * ds; mapped to threads.

float sigT2 = sigT * sigT;
0 Within a warp, energy groups

are attenuated in SIMT.
0 Same goal as CPU.

float flux_integral = (g0 * tau + (sigT * ...)

OCCA

occaKernel void kernel(...) {

int outerId = outerIdl * outerDim@ + outerIdo;
if (outerld >= n_segments) return;

for (int outerIdl = ©; outerIdl < outerDiml; outerIdl++; outerl) {
for (int outerIdo = 0; outerIdd@ < outerDim@; outerIdO++; outerod) {

int g = innerldo;

float tau = sigT * ds;
float sigT2 = sigT * sigT;

float flux_integral = (g0 * tau + (sigT * ..

for (int innerld® = ©; innerld® < innerDim@; innerId@++; innerd) {

-)

Outer loop over segments,
inner loop over energy groups.

When compiled for CUDA,
energy groups are computed
in SIMT.

When compiled for OpenMP,
the energy groups are NOT
vectorized.

o Compiler cannot resolve

dependencies without loop
fission.

Question: how do we write an
efficient and portable kernel?

SimpleMOC-kernel Performance

]
[|
Xeon Sandy Bridge OpenMP
(2X E5-2650, 32 threads) (Intel)
® OpenMP
(GNU)

Xeon Haswell
(2X E5-2699, 72 threads)

" OCCA (GNU)

“ CUDA

Tesla K40m ® OpenACC

0.0 0.5 1.0 1.5 2.0 2.5
Time per lookup (ns)

SimpleMOC-kernel CPU Vectorization

Xeon Sandy Bridge
(2X E5-2650, 32 threads)

Xeon Haswell
(2X E5-2699, 72 threads)

0.0 0.5 1.0 1.5
Time per lookup (ns)

2.0

2.5

® OpenMP (Intel)
OpenMP (Intel, no vec)

® OpenMP (GNU)

“ OpenMP (GNU, no vec)

" OCCA (GNU)

Conclusions
I

0 Monte Carlo App:
O Coarse-grained parallelism
O Easy to express portably

0 Method of Characteristics App:
O Fine-grained parallelism
0 Harder to express with portable performance

O We live in an interesting time and can expect fascinating
solutions!

Citations
S

O

Gunow, G., Tramm, J., Forget, B., Smith, K., & He, T. (2015). SimpleMOC - A PERFORMANCE ABSTRACTION
FOR 3D MOC. In ANS MC2015 -- Joint International Conference on Mathematics and Computation (M&C),
Supercomputing in Nuclear Applications (SNA), and the Monte Carlo (MC) Method. Nashville, Tennessee:
American Nuclear Society.

Meding, D. S., St-Cyr, A., & Warburton, T. (2014). OCCA: A unified approach to multi-threading languages.
arXiv, 1-25. Retrieved from arxiv.org/abs/1403.0968

Siegel, A. R., Smith, K., Romano, P. K., Forget, B., & Felker, K. G. (2014). Multi-core performance studies of a
Monte Carlo neutron transport code. International Journal of High Performance Computing Applications,

28(1), 87-96. doi:10.1177/1094342013492179

Tramm, J. R., & Siegel, A. R. (2013). Memory Bottlenecks and Memory Contention in Multi-Core Monte Carlo

Transport Codes. In Joint International Conference on Supercomputing in Nuclear Applications and Monte
Carlo 2013 (SNA + MC 201 3). Paris, France: La Cite des Sciences et de I'Industrie.

Tramm, J. R, Siegel, A. R, Islam, T., & Shulz, M. (2014). XSBENCH — THE DEVELOPMENT AND VERIFICATION
OF A PERFORMANCE ABSTRACTION FOR MONTE CARLO REACTOR ANALYSIS. In PHYSOR 2014 - The Role
of Reactor Physics toward a Sustainable Future. Kyoto, Japan: The Westin Miyako.

Repositories
N ==

0 XSBench, https://qgithub.com /ANL-CESAR /XSBench

0 SimpleMOC-kernel,
https: //github.com /ANL-CESAR /Simple MOC-kernel

0 OCCAZ2, https://github.com /tcew /OCCA2

