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Linear Algebra: QR Decomposition
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Swan

 Task dataflow model established in HPC
— SuperMatrix, QUARK, StarSS/OmpSS, StarPU, Xkaapi,

— Supports runtime optimization:

* Locality-aware scheduling, scheduling in distributed memory
systems, runtime-aware coherence protocols, ...

* Application domain is not restricted to HPC
— Pipeline parallelism [HotPar’11, PACT’'11]
— Fine-grain queues for PARSEC benchmarks [SC'14]
— Exploring big data setting (EU-FP7 ASAP)

 Swan is designed not to be restricted to HPC
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Swan = Cilk + Dataflow

 "Master” spawns tasks in program order

* Annotations of arguments indicate usage of argument
— All side effects must be captured

Roots of DAG:

void master(){ . staEEtC_it:]’;i nognor

data _type X, vy, z; ( ready

I tasks : worker queues
spawn A(inx,outy); ‘\_"2°°_ _ _ L/‘

spawn B(iny, out z);
spawn C( inout x, in z);
sync;
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Swan Language Definition
as a C++ Extension

* Versioned objects * Independent fork/join
versioned<T> obj; int x;
unversioned<T> obj; spawn f(x);
sync;
 Argument annotations
indep<T> read-only e D g i
outdep<T> read/write ependency-aware

fork/join
versioned<int> x;
spawn f( (indep<int>)x );

but no exposed reads
inoutdep<T>  read/write
cinoutdep<T>  commutative

reduction<M>  reduction sync;

--Tis a C++ type

-- M is a C++ structure describing the e Retain implicit sync at end of
monoid with type T, an identity procedure

value and a reduction operator
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From Side Effects to Dependences
L FstTask

input  output in/out commutative  reduction
in/out

— | input

o

= | output

o

§ in/out

4| commutative
in/out
reduction

Assumption: Two tasks access the same variable with annotations as in table
Notes:

* noneX: no dependence, except for enforcement of mutual exclusion

* nonel: no dependence, except for privatization of variables and final reduction
* Renaming (new copy of variable), applied only on output annotation
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Linear Algebra: QR Decomposition

typedef versioned<float[]> block_t;
typedef indep<float[]> bin;
typedef outdep<float[]> bout;
typedef inoutdep<float[]> binout;

// Initialise matrices using blocked matrix representation
versioned<float[]> A[N][N]; A[i][j] = new versioned<float[]>(D*D); ...;
versioned<float[]> T[N][N]; ...;
// QR dedomposition: A contains Q and R; T is temporary storage
for( k=0; k < N; ++k ) {
spawn dgeqrt((binout)A[k][k], (bout)T[k][k]);
for( m=k+1; k < N; ++k ) {
spawn dtsqgrt( (binout)A[k][k], (binout)A[m][k], (binout)T[m][k] );
for( n=k+1; n < N; ++n)
spawn dormqr((bin)A[k][k], (bin)T[k][k], (binout)A[k][n] );
for( m=k+1; m < N; ++m)
spawn dssmgr( (bin)A[m][k], (bin)T[m][k], (binout)A[k][n], (binout)A[m][n] );

sync;
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Unified Scheduler

Typical Cilk spawn tree Typical task dataflow spawn tree

* Shallow spawn tree

* Dataflow dependencies between
children
* Every task in the spawn tree may
organize its children in a dataflow
graph
* Deep spawn tree * Arbitrary nesting of fork/join and
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Mixed fork/join — dataflow

spawn tree

Quoons University
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Unified Scheduler

task graph 1

task graph 2
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Qualitative properties

Cannot maintain busy-leaves
principle
— Non-ready tasks are non-busy
leaves
Maintains work-first principle
— Execute task immediately if
data dependencies allow it
— Keeps the task graph small

Work stealing in dataflow
graphs more frequent then in
fork/join



Work Stealing

* Extend data structures scheduler

— Cilk’s spawn dequeue + one ready list per worker thread
* |f worker’s ready list is not empty

— Select and execute a task from the worker’s ready list
e Random work stealing

— Select a random victim worker thread

— If victim’s ready list not empty, steal half of ready tasks
[Hendler & Shavit, '02]

— Place 1 stolen task on spawn deque and execute
* Unconditional steal, “provably-good” steal

— As in Cilk: continue with parent if possible, else do random
work stealing algorithm
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e Parallelize L3 BLAS

PLASMA/QUARK Setup (i)

* Matri ted b

blgcrkI: represented by ....
1 1 1
1 11
1 1 1

operations as
“algorithms-by-blocks”

— DAG of by-block
operations

— Performance
independent of
algorithm variation
[Chan et al, PPoPP’08]
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 Matrix represented by

PLASMA/QUARK Setup (i)

Nl NN
BN

EENE
HEEN

blocks

 Some operations touch

only part of a block

— Upper/lower triangles,
diagonal

— Precise dependence
tracking increases
parallelism




Swan Interface to PLASMA

N p
I 1

L e eptparcorigt I N
EEETuap_futdemT,part:Iol Tl N

plasma_inoutdep<T,part=lo]|

e swan_desc<T>

— Overlays a 2D array of Swan
objects (unversioned<void>)

over matrix
— Tis float or double

diag|up> * Dependence tracking
— partis lo, diag or up, or a — Lo/diag/up sub-parts treated as
combination of these independent variables, for all blocks
e Parallel algorithms — QUARK locates ready tasks by

— desc.get_indep<part=...>(), etc walking list of tasks waiting on a
- T block
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Experimental Evaluation

* Swan-based APl for PLASMA routines
— Drop-in replacement
— Same parallelism exploited as QUARK
— Call into same core BLAS routines
— QUARK exploits memory locality (affinity)

* Evaluation environment

— 2x 8-core Intel Xeon E5-2650 2GHz
— PLASMA 2.6.0

— Cent0S 6.5, gcc 4.9.2

— MKL version 11.1.2, single-threaded

EASC 2015
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Quantifying Overhead
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Measure overhead of
tracking dependences on
3 parts of an object

— QR, 16 threads

— Normalized to standard
dependences on full matrix

blocks
Overhead statistically
insignificant
Benefit on small matrices
— 2x2 to 16x16 matrix blocks
— Increased parallelism
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QR (dgeqgrf)
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LU (dgetrf incpiv)
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Conclusion

* Swan is a language approach to task dataflow
programming and execution

 Swan is a good alternative to QUARK for linear
algebra kernels
— Out-perform QUARK for a range of mid-size matrices

— Performance difference grows with number of
threads

e Future work:

— Include memory locality / affinity in scheduling
— Include NUMA awareness in work stealing
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Questions?

* Collaborators:
— Dimitris S. Nikolopoulos, George Tzenakis (QUB)
— Polyvios Pratikakis (FORTH ICS)
— Kallia Chronaki (BSC)
* Available for your experimentation:
— http://github.com/hvdieren/swan/
— http://github.com/hvdieren/parsec-swan/
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