Efficiently Scheduling Task
Dataflow Parallelism

Hans Vandierendonck
Queen’s University Belfast
EASC’15

Edinburgh, UK

Linear Algebra: QR Decomposition

—

k = SIZE-1
FOR k|= 0 .. SIZE-1

Alk][k]} [T[k][k]

FO
UPPER

m k+l .. SIZE-

1

r
|
[

TD—TJSQRT Ark]rklb A[m)[k],

T[m][k])

LOWER o

FOR\n = k+I ~.._ SIZE-

1

Ark][n] <- DORMOR|

Alk][k]} |T(k][k]} A[k][n])

FOR m = k+1 .. SIZE-1

n = k+1
A[k][n], |A[m][n][<- ~ mM=k+l .
DSSMOR(A[m] [k], T[m][k], A[k][n], A[m][n]) @

EASC 2015

Source: http://icl.cs.utk.edu/parsec/

Swan

 Task dataflow model established in HPC
— SuperMatrix, QUARK, StarSS/OmpSS, StarPU, Xkaapi,

— Supports runtime optimization:

* Locality-aware scheduling, scheduling in distributed memory
systems, runtime-aware coherence protocols, ...

* Application domain is not restricted to HPC
— Pipeline parallelism [HotPar’11, PACT’'11]
— Fine-grain queues for PARSEC benchmarks [SC'14]
— Exploring big data setting (EU-FP7 ASAP)

 Swan is designed not to be restricted to HPC

; / EASC 2015 2

Swan = Cilk + Dataflow

 "Master” spawns tasks in program order

* Annotations of arguments indicate usage of argument
— All side effects must be captured

Roots of DAG:

void master(){ . staEEtC_it:]’;i nognor

data _type X, vy, z; (ready

I tasks : worker queues
spawn A(inx,outy); ‘_"2°°_ _ _ L/‘

spawn B(iny, out z);
spawn C(inout x, in z);
sync;

; / EASC 2015 3

Swan Language Definition
as a C++ Extension

* Versioned objects * Independent fork/join
versioned<T> obj; int x;
unversioned<T> obj; spawn f(x);
sync;
 Argument annotations
indep<T> read-only e D g i
outdep<T> read/write ependency-aware

fork/join
versioned<int> x;
spawn f((indep<int>)x);

but no exposed reads
inoutdep<T> read/write
cinoutdep<T> commutative

reduction<M> reduction sync;

--Tis a C++ type

-- M is a C++ structure describing the e Retain implicit sync at end of
monoid with type T, an identity procedure

value and a reduction operator

! / EASC 2015

From Side Effects to Dependences
L FstTask

input output in/out commutative reduction
in/out

— | input

o

= | output

o

§ in/out

4| commutative
in/out
reduction

Assumption: Two tasks access the same variable with annotations as in table
Notes:

* noneX: no dependence, except for enforcement of mutual exclusion

* nonel: no dependence, except for privatization of variables and final reduction
* Renaming (new copy of variable), applied only on output annotation

Queen’s University
Belfast
EASC 2015

Linear Algebra: QR Decomposition

typedef versioned<float[]> block_t;
typedef indep<float[]> bin;
typedef outdep<float[]> bout;
typedef inoutdep<float[]> binout;

// Initialise matrices using blocked matrix representation
versioned<float[]> A[N][N]; A[i][j] = new versioned<float[]>(D*D); ...;
versioned<float[]> T[N][N]; ...;
// QR dedomposition: A contains Q and R; T is temporary storage
for(k=0; k < N; ++k) {
spawn dgeqrt((binout)A[k][k], (bout)T[k][k]);
for(m=k+1; k < N; ++k) {
spawn dtsqgrt((binout)A[k][k], (binout)A[m][k], (binout)T[m][k]);
for(n=k+1; n < N; ++n)
spawn dormqr((bin)A[k][k], (bin)T[k][k], (binout)A[k][n]);
for(m=k+1; m < N; ++m)
spawn dssmgr((bin)A[m][k], (bin)T[m][k], (binout)A[k][n], (binout)A[m][n]);

sync;

EASC 2015 Source: http://icl.cs.utk.edu/paréec/

Unified Scheduler

Typical Cilk spawn tree Typical task dataflow spawn tree

* Shallow spawn tree

* Dataflow dependencies between
children
* Every task in the spawn tree may
organize its children in a dataflow
graph
* Deep spawn tree * Arbitrary nesting of fork/join and

Queen’s University task graphs
Belfast
EASC 2015 7

Mixed fork/join — dataflow

spawn tree

Quoons University
Belfast

Unified Scheduler

task graph 1

task graph 2

EASC 2015

Qualitative properties

Cannot maintain busy-leaves
principle
— Non-ready tasks are non-busy
leaves
Maintains work-first principle
— Execute task immediately if
data dependencies allow it
— Keeps the task graph small

Work stealing in dataflow
graphs more frequent then in
fork/join

Work Stealing

* Extend data structures scheduler

— Cilk’s spawn dequeue + one ready list per worker thread
* |f worker’s ready list is not empty

— Select and execute a task from the worker’s ready list
e Random work stealing

— Select a random victim worker thread

— If victim’s ready list not empty, steal half of ready tasks
[Hendler & Shavit, '02]

— Place 1 stolen task on spawn deque and execute
* Unconditional steal, “provably-good” steal

— As in Cilk: continue with parent if possible, else do random
work stealing algorithm

; / EASC 2015

e Parallelize L3 BLAS

PLASMA/QUARK Setup (i)

* Matri ted b

blgcrkI: represented by
1 1 1
1 11
1 1 1

operations as
“algorithms-by-blocks”

— DAG of by-block
operations

— Performance
independent of
algorithm variation
[Chan et al, PPoPP’08]

Queens University
Belfast
EASC 2015

10

 Matrix represented by

PLASMA/QUARK Setup (i)

Nl NN
BN

EENE
HEEN

blocks

 Some operations touch

only part of a block

— Upper/lower triangles,
diagonal

— Precise dependence
tracking increases
parallelism

Swan Interface to PLASMA

N p
I 1

L e eptparcorigt I N
EEETuap_futdemT,part:Iol Tl N

plasma_inoutdep<T,part=lo]|

e swan_desc<T>

— Overlays a 2D array of Swan
objects (unversioned<void>)

over matrix
— Tis float or double

diag|up> * Dependence tracking
— partis lo, diag or up, or a — Lo/diag/up sub-parts treated as
combination of these independent variables, for all blocks
e Parallel algorithms — QUARK locates ready tasks by

— desc.get_indep<part=...>(), etc walking list of tasks waiting on a
- T block

m Queen’s University
[_‘r’ ,‘: $
EASC 2015 12

Experimental Evaluation

* Swan-based APl for PLASMA routines
— Drop-in replacement
— Same parallelism exploited as QUARK
— Call into same core BLAS routines
— QUARK exploits memory locality (affinity)

* Evaluation environment

— 2x 8-core Intel Xeon E5-2650 2GHz
— PLASMA 2.6.0

— Cent0S 6.5, gcc 4.9.2

— MKL version 11.1.2, single-threaded

EASC 2015

13

Quantifying Overhead

1.10

Relative Time
o = =
v 8 3

o
o
o

0.85

0.80

T s
€L

| T
T 1 =0=std deps
+ T) ==std deps, 3x
I
l partial deps

0

O

500 1000 1500 2000 2500 3000 3500 ®

Matrix Dimension

EASC 2015

Measure overhead of
tracking dependences on
3 parts of an object

— QR, 16 threads

— Normalized to standard
dependences on full matrix

blocks
Overhead statistically
insignificant
Benefit on small matrices
— 2x2 to 16x16 matrix blocks
— Increased parallelism

14

400
350
300

© 250

Q.

© 200

Ll

O 150
100

Cholesky (spotrf)

16 threads N=1500

=Z=Swan

==QUARK

O 2 4 6 8 10 12 14 16

Matrix dimension (square) Threads

een’s University

EASC 2015 15

QR (dgeqgrf)

16 threads
160 120
140
100
120 -
w 80
E100 £
g; 80 Sa 60
© 60 -]
40
40 <Z=Swan |
20 - =o=QUARK | 20
0 [[[[[[[[[[[[[[[|
O O O O O O O O 0
©O O &6 &6 & & & o
LN LN LN LN LN LN LN LN
— N o <t LN (Vo) N~

! Matrix dimension (square)
m Queen’s University

EASC 2015

N=1500

+12%

==Swan

==QUARK

0

2 4 6 8 10 12 14 16

Threads

16

LU (dgetrf incpiv)

16 threads
140
120
100 -
< "
a 80 =
= S
= 60 z
40
«=Swan
20 - ~<=QUARK |
0 [[[[[[[[[[[[[[[|
O O O O O O o o
O O O O O o o o
LN LN LN LN LN LN LN LN
—i N (qp] < LN (o] N~

EASC 2015

Matrix dimension (square)
Quoo'*s University
[_»' fact

100
90
80
70
60
50
40
30
20
10

N=1500

+13%

==Swan

==QUARK |

0

2 4 6 8 10 12 14 16

Threads

17

Conclusion

* Swan is a language approach to task dataflow
programming and execution

 Swan is a good alternative to QUARK for linear
algebra kernels
— Out-perform QUARK for a range of mid-size matrices

— Performance difference grows with number of
threads

e Future work:

— Include memory locality / affinity in scheduling
— Include NUMA awareness in work stealing

; / EASC 2015

18

Questions?

* Collaborators:
— Dimitris S. Nikolopoulos, George Tzenakis (QUB)
— Polyvios Pratikakis (FORTH ICS)
— Kallia Chronaki (BSC)
* Available for your experimentation:
— http://github.com/hvdieren/swan/
— http://github.com/hvdieren/parsec-swan/

SEVENTH FRAMEWORK

PROGRAMME Engineering and Physical Sciences
Research Council

EASC 2015

