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HPC has been pretty successful...
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Example: HACC Cosmology Code

= HACC cosmology code from Argonne (Salman Habib) achieved
14 PFlops/s on Sequoia (Blue Gene/Q at LLNL)
— Ran on full Sequoia system using MPI + OpenMP hybrid

— Used 16 MPI ranks * 4 OpenMP threads per rank on each node, which
matches the architecture: 16 cores per node with 4 hardware threads each

— ~ 6.3 million way concurrency: 1,572,864 MPI ranks * 4 threads/rank
— http://www.hpcwire.com/hpcwire/2012-11-29/

sequoia supercomputer runs cosmology code at 14 petaflops.html
— SC12 Gordon Bell prize finalist

The HACC code has been used to run one of the
largest cosmological simulations ever, with
1.1 trillion particles

Pete Beckman Argonne National Laboratory / Northwestern University



Old Wisdom:
Moore’s Law = free exponential speedups!

Moores law
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Intel: Moore's Law will
continue through 7nm chips

Mark Hachman | @markhachman
Senior Editor, PCWorld Feb 22,2015 12.00PM | =3
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Reality: Computing improvements have slowed
dramatically over the past Decade

Transistors you can buy for a fixed #

of dollars in leading technology is no Without Intel CPUs
longer increasing!

Single core vs all cores comparison

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Years

=@=Single Core *==#=All Cores L"' ' l L ! . | , ,.-.' ' l { ‘.

Sockets and Cores Growing

Single thread performance

- s improvement is slow. (Specint)
Leeot | g |m ||l"‘l!ll"|8!
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= T - ] "Herbert Stein's Law: "If something cannot

S T S R B R go on forever, it will stop,"

*”Intel has done a little better over this period,

. Increasing at 21% per year.
*”No Moore?”, Economist, Nov 2013. g o pery Courtesy: Andrew Chies
a .
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Old Wisdom:

Efficient Algorithms minimize operations

Classic Analysis of Algorithms: Ops = Time
Make algorithm quicker: minimize flops, compares

Ops: Best, Worst, Average, Space

1.4.5 Thinking About Data Motion

Another important attribute of a matrix algorithm concerns the actual vol-
ume of data that has to be moved around during execution. Matrices sit
in memory but the computations that involve their entries take place in
functional units. The control of memory traffic is crucial to performance
in many computers. To continue with the factory metaphor used at the
beginning of this section: Can we keep the superfast arithmetic units busy
with enough deliveries of matriz data and can we ship the results back to

" AV e # A memory fast enough to avoid backlog? FiG.1.4.3 depicts the typical situs-
ONSOF  qonsOF e i tion in an advanced uniprocessor environment. Details vary from machine
- % ‘.‘———"‘/ YIONS « \
®_— WK
{ Functional Units |
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MATRIX [ Moo Momoy ]
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i [ Dk |
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= '\'\“/ TR, YR | o FIG. 1.4.3 Memory Hierarchy
i~ —-_—TH R

thine, but two “axioms;; prevail:

ach level in the hierarchy has a limited capacity and for economic
teasons this capacity is usually smaller as we ascend the hierarchy.

Fhere is a cost, sometimes relatively great, associated with the moving
f data between two levels in the hierarchy.

1996
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The design of an efficient matrix algorithm requires careful thinking about
the flow of data in between the various levels of storage. The vector touch
anddaf.’re-uaem‘s\mueunportantmthuregard. 9
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Reality:
Efficient = optimize data movement (and power)

We’'ve Hit a Power Ceiling
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Pipelining, load/store, GPGU...
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Old Wisdom:
Parallel Algorithms: Equal Work = Equal Time
(computers run at predictable speeds)

SPMD Code: Divide data into equal sized chucks across p processors

For all timesteps {
exchange data with neighbors

compute on local data
barrier Core CPU Performance Leadership

1.5-3x

CPU Performance
(Specint_2000, Specint_rate2000)
>500 Specint_2000 Higher = Better
in Smartphone

——

Courtesy: Andrew Chien ”
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Reality: Performance is Highly Variable

Memory Hierarchy Depth
(1-150-?)

Ranger Local and Remote Latency
'single-stream pointer-chasing, 128 byte stride
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+ new Non-volatile memory (3,000 cycles)

+ old Non-volatile memory Flash (150,000 cycles)
2009 2015 5
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The New Exascale Reality

. C : il c el forf
— Rapid exponential improvement is over, slow improvement will
continue for awhile... Parallelism explodes, SQUEEEEZE!

. e .

— More operations can better, optimize for locality, data movement,
power

" Computersrunottired,predictablespeed——

— Increasing dynamic and flexible, complication and advantage

13
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What Prevents Scalability?

(in the large and in the small)

" |nsufficient parallelism

— As the problem scales, more parallelism must be found

" |Insufficient latency hiding

— As the problem scales, more latency must be hidden

= |nsufficient resources (Memory, BW, Flops)

— As the problem scales, so must the resources needed

14
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What Prevents Scalability?

(in the large and in the small)

" |nsufficient parallelism

— As the problem scales, more parallelism must be found

Insufficient latency hiding

— As the problem scales, more latency must be hidden

= |nsufficient resources (Memory, BW, Flops)

— As the problem scales, so must the resources needed

As we scale machine, system becomes more dynamic

As we squeeze power, system becomes more dynamic
As we address resilience, system becomes more dynamic
As we share networks, system becomes more dynamic

15
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... Google (re-discovers) OS Noise & Contention

Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

Component-Level Variability
Amplified By Scale

A common technique for reducing la-
tency in large-scale online services is to
parallelize sub-operations across many
different machines, where each sub-op-
eration is co-located with its portion of
a large dataset. Parallelization happens
by fanning out a request from a root to
a large number of leaf servers and merg-
ing responses via a request-distribution
tree. These sub-operations must all
complete within a strict deadline for the

Living with Latency Variability

The careful engineering techniques in
the preceding section are essential for
building high-performance interactive
services, but the scale and complexity
of modern Web services make it infea-
sible to eliminate all latency variabil-
ity. Even if such perfect behavior could

6 Pete Beckman

BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

The Tail
at Scale

Probability of one-second service-level response time as the system scales and frequency

Reducing Component Variability

Interactive response-time variability
can be reduced by ensuring interactive
requests are serviced in a timely manner

of server-level high-latency outliers varies.
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Exploring Dynamic
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Exploring Dynamic
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Dynamic Power and Temp from
Turboboost

pkg0=2600; pkg1=2600 pkg0=2600; pkg1=2601
100,

*-nt; pkgO0
-¢-nt; pkg1
-e-nb; pkg0

nt; pkg0
-e-nt; pkg1

Temperature (° C)
(o))
o
Temperature (° C)
(o))
o

& "oy

-e-nb; pkg0
-°-nb; pkg1 -°-nb; pkg1
20 200 400 600 20, 200 400 600
Increments of 2 Seconds

Increments of 2 Seconds
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\
We live with dynamic now... More examples
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D
Our Hardware is Dynamic, Adaptive Today! A N

(the future is even more dynamic)

140

Bulk Synchronous is our scaling problem

* #MPI (library that moves data with put/get or send/recv)
e We must focus on dynamic behavior

“0OS Noise” and “jitter” is a legacy distraction

* OS & Runtime must be VERY active...

* Forget that old-school “get out of the way” stuff

Load balancing is necessary, but not sufficient...

e How do we design software in this new era?

* How do we build latency tolerant algs?

e (Can we create tools that measure, learn,
predict, and then improve performance?

150 160 170

21
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How Pliable does node code need to be?
How do we measure pliability?

» | * What is the shape of performance
: distribution?
» | * How much latency do we need to hide?
#| « \What is the cost of dynamic execution?
Y e Re e ©  Can we build in predictive models?

o
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But yet, We Pretend our World is Not
Dynamic

= Trinity/NERSC-

“The system shall provide
runtime (i.e. wall clock time) shall not change by more than 3% from run-to-
run in dedicated mode and 5% in production mode.”

ASCAC Top 10 Research Challenges for Exascale

*“[...] power management [..] through dynamic adjustment of
system balance to fit within a fixed power budget”

*[...] Enabling [...] dynamic optimizations [...] (power, performance,
and reliability) will be crucial to scientific productivity. “

*“[...] Next-generation runtime systems are under development
that support different mixes of several classes of dynamic
adaptive functionality. “

“dynamic” mentioned 43 times in 86 pg report

23
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Exascale Lesson:

= Code should be as static as possible, but no more so

= 1) Prepare: Create flexibility via over-decomposition, clear expression of
dependencies

= 2) Take small steps to becoming more pliable.... statically
— (static) mapping of resource (slow/fast; heat)
— (static) load balancing (periodic repartitioning)
— (static) dependency graph tiling of stencils to match communication

= 3) Find goal-oriented optimization
— Dynamic lightweight work-sharing
— Dynamic power management

— Dynamic data movement across hierarchy
Code should not consider dynamic a performance error
(e.g. NERSC)

Pete Beckman Argonne National Laboratory / Northwestern University
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1 Adaptive Cruise Control

2 Electronic Brake System MK60E

3 Sensor Cluster

4 Gateway Data Transmitter

5 Force Feedback
Accelerator Pedal

6 Door Control Unit
7 Sunroof
Control Unit

'8 Reversible Seatbelt
Pretensioner

9 Seat Control Unit

10 Brakes

11 Closing Velocity Sensor

12 Side Satellites

13 Upfront Sensor

14 Airbag Control Unit

Driver Event Data Active
Transmission Control Night Vision Alertness Recorder CabinNoise ~ Cabin  Entertainment
Mission Control, etc. ] Monitoring Auto-Dimming Suppression Environment System
Windshield Head-Up Mirror Controls
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Display Interior
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Absolute mean error (°C)
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Human Learning® |

Chicago commute one of nation's most
unpredictable, study suggests

February 05, 2013 | By Jo
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Automatically Tuned Linear Algebra Software (ATLAS)
... 15 yrs ago...

500x500 Recursive BLLAS on
433Mhz DEC 21164

€00

Primitive Machine Learning:
“Search and Select” (no humans)

But embarrassingly static....
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Level 3 BLAS On One Processor of a Sun UltraSparg
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CP2K Runtime (seconds)
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OpenMP threads / MPI tasks

Performance of CP2K H20-64 benchmark on the Xeon Phi

GO MPI
(3-£1 OpenMP

&~ MPIIOpenMP - original placement
+—+ MPI/'OpenMP - optimal placement

Total number of cores used

Pete Beckman

time (s)

0.001
1

Number of threads

“The figure shows the performance of MPI,
OpenMP and MPI+OpenMP versions of CP2K.
The blue diamonds show the original
performance with poor task placement. The
green line shows the final result with optimal
placement. This obtained better performance
than both the MPI and OpenMP versions and
enabled more virtual threads to be used. The
best placement was found to be a balanced
approach where each of the 60 physical cores
have as few threads as possible whilst also
keeping the threads belonging to a particular
MPI process physically close to one another.”
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OpenMP has less scalability due to implicit parallelism while MPI
allows multi-dimensional blocking.

All threads are idle except one while MPI communication.
— Need overlap comp and comm for better performance.
— Critical Section for shared variables.

Thread creation overhead

Cache coherence, false sharing.

Data placement, NUMA effects.

Natural one level parallelism problems.

Pure OpenMP code performs worse than pure MPI within node.
Lack of optimized OpenMP compilers/libraries.

NPB 3.3 BT C 24 (1 Node) Hybrid Benchmark
250.00 1.2

200.00 \
—— 08 3
£ 15000 S > mpol
= 06 ©  Mmcray
3 © 8 [Pathscale
S 10000 S mon
‘;‘, 0.4 % ~—Mem(GB)
=
- I] I] I] )
0.00 0
1 2 3 4 6 8 12 24
OpenMP Threads per Node aprun-n 4-d6...

350.00

300.00

250.00

200.00

150.00

Wall Clock Time

100.00

50.00

0.00

aprun-n4-S1-d6...

Debugger tools: DDT, Totalview, gdb, Valgrind.
Profiling: IPM, CrayPat, TAU.

Decide which loop to parallelize. Better to parallelize outer loop. Decide
whether Loop permutation, fusion or exchange is needed. Use NOWAIT
clause if possible.

Choose between loop-based or SPMD.
Use different OpenMP task scheduling options.

Experiment with different combinations of MPI tasks and number of
Bhregdg ﬁr MPI task. Less MPI tasks may not saturate inter-node
andwidth.

Adjust environment variables.

Aggressively investigate different thread initialization options and the
possibility of overlapping communication with computation.

Try OpenMP TASK.

Leave some cores idle on purpose: memory capacity or bandwidth
capacity.

Try different compilers.

Pete Beckman
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Argonne’s Next Big Machine: Aurora

6 Pete Beckman Argonne National Laboratory / Northwestern University



Argonne’s Aurora Details

System Feature Aurora

Peak System performance (FLOPs) 180 - 450 PetaFLOPS

Processor 3"d Generation Intel® Xeon Phi™ processor (code name Knights Hill)
Number of Nodes >50,000

Compute Platform Cray Shasta next generation supercomputing platform

High Bandwidth On-Package Memory, Local

Memory, and Persistent Memory 2l FEEIIEE

System Interconnect 2"d Generation Intel® Omni-Path Architecture with silicon photonics
Interconnect interface Integrated

Burst Storage Buffer Intel® SSDs, 2"d Generation Intel® Omni-Path Architecture

File System Intel Lustre* File System

File System Capacity >150 PetaBytes

File System Throughput >1 TeraByte/s

Intel Architecture (x86-64) Compatibility Yes

Peak Power Consumption 13 Megawatts
FLOPS/watt >13 GFLOPS/watt
Delivery Timeline 2018
Facility Area ~3,000 sq. ft.
*f“{'-m’tw
ow‘i‘ﬁ—if— Pete Beckman Argonne National Laboratory / Northwestern University -
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Conclusions: The Times They are A-Changin’

= Embrace DYNAMIC!
— Work # Time

= Optimize algorithms for data movement
= Learn to love runtime systems

= Explore adaptive, learning, predictive software
stacks that takes humans out of the loop...

— Sorry humans, you are too slow.
— Reject human tuning papers...

— System software stack must stop being forgetful.....

* mpiexec -n 1048576 a.out EXASCALE NODE ARCHITECTURE* e

INTEGRATED PROCESSING AND MEMORY FOR
PERFORMANCE AND EFFICIENCY

e mpiexec -n 1048576 a.out
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Questions?

Argonne National Laboratory / Northwestern University
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