AAAAAAAAAAAAAAAAAA

Software for Exascale

Pete Beckman

Argonne National Laboratory
Northwestern University

Exascale Applications and Software Conference
EASC 2015, Edinburgh
April 21, 2015

. WA s

7%, U.S. DEPARTMENT OF
"¢ ENERGY

Argonne: Part of DOE National Laboratory System

- S Argonne°

NATIONAL LABORATORY
"E:uw”":_fbo"' - 'm""‘ Fermi Natonal

Pacific Northwest

National Laboratory
Lawrence Berkeley "
National Laboratory L Brookhaven National
Laboratory
SLAC National Princaton Plasma
Accelerator Laboratory Physics Laboratory
Lawrence Livermore Thomas Jefferson National
National Laboratory Accelerator Facility
Sandia Oak Ridge National
National Laboratories Laboratory
Los Alamos 5
. Savannah River
Nationa! Laboratory Naticnal
Laboratory
@® Office of Science ; _
® NNSA Pantex Plant %
O Energy

@ Environmental Management

& 2
Aﬁn Argonne National Laboratory / Northwestern University

‘) Pete Beckman Argonne National Laboratory / Northwestern University

‘i apy!n,.-r—«\ - DN S E——— % ¥ § S
Sr—g mc-. 8 P sl ’ ‘ | | : =
- : 2 .._'_ Rraiat = 47 . "

". —‘*-‘ “ ,_(——_".

.,;, = 3

Agﬁ‘nne Natlonal Laboratory :

- TN T ' §

"= $675M /yr budget
3,200 employees
1,450 scientists/eng
750 Ph.D.s

N
HPC has been pretty successful...

Tianhe-2

Sequoié

atory / Northwestern University

Example: HACC Cosmology Code

= HACC cosmology code from Argonne (Salman Habib) achieved
14 PFlops/s on Sequoia (Blue Gene/Q at LLNL)
— Ran on full Sequoia system using MPI + OpenMP hybrid

— Used 16 MPI ranks * 4 OpenMP threads per rank on each node, which
matches the architecture: 16 cores per node with 4 hardware threads each

— ~ 6.3 million way concurrency: 1,572,864 MPI ranks * 4 threads/rank
— http://www.hpcwire.com/hpcwire/2012-11-29/

sequoia supercomputer runs cosmology code at 14 petaflops.html
— SC12 Gordon Bell prize finalist

The HACC code has been used to run one of the
largest cosmological simulations ever, with
1.1 trillion particles

Pete Beckman Argonne National Laboratory / Northwestern University

Old Wisdom:
Moore’s Law = free exponential speedups!

Moores law

éeg'nere 6C l Bnci S

109 acle
Z SPARC ‘24
' AMD K10 oo
THE WAL STREET JOURNAL, Tl g 50’ 2 108 (AMD K8 Core? Quad
" o Athlon entium
Tech Axiom 2107 o 6 A
o entium
b ' ° entium Pro
.Moore s Law € s gl Ero
< MC68020 i486
Shows A e 5
a2 3 10w
» ~ E - 88086
03 | 4 }
1970 1980 1990 2000 2010 2020 2030
Year

Intel: Moore's Law will
continue through 7nm chips

Mark Hachman | @markhachman
Senior Editor, PCWorld Feb 22,2015 12.00PM | =3

° 3 - . Pete Beckman Argonne National Laboratory / Northwestern University

Reality: Computing improvements have slowed
dramatically over the past Decade

Transistors you can buy for a fixed #

of dollars in leading technology is no Without Intel CPUs
longer increasing!

Single core vs all cores comparison

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Years

=@=Single Core *==#=All Cores L"' ' l L ! . | , ,.-.' ' l { ‘.

Sockets and Cores Growing

Single thread performance

- s improvement is slow. (Specint)
Leeot | g |m ||l"‘l!ll"|8!

o i L s} _ .

= T -] "Herbert Stein's Law: "If something cannot

S T S R B R go on forever, it will stop,"

*”Intel has done a little better over this period,

. Increasing at 21% per year.
*”No Moore?”, Economist, Nov 2013. g o pery Courtesy: Andrew Chies
a .

Src: Linley Group Pete Beckman Argonne National Laboratory / Northwestern University

Old Wisdom:

Efficient Algorithms minimize operations

Classic Analysis of Algorithms: Ops = Time
Make algorithm quicker: minimize flops, compares

Ops: Best, Worst, Average, Space

1.4.5 Thinking About Data Motion

Another important attribute of a matrix algorithm concerns the actual vol-
ume of data that has to be moved around during execution. Matrices sit
in memory but the computations that involve their entries take place in
functional units. The control of memory traffic is crucial to performance
in many computers. To continue with the factory metaphor used at the
beginning of this section: Can we keep the superfast arithmetic units busy
with enough deliveries of matriz data and can we ship the results back to

" AV e # A memory fast enough to avoid backlog? FiG.1.4.3 depicts the typical situs-
ONSOF qonsOF e i tion in an advanced uniprocessor environment. Details vary from machine
- % ‘.‘———"‘/ YIONS « \
®_— WK
{ Functional Units |
i l
[Cache]
,, ’ GENE H. GOLUB - CHARLES F. VAN LOAN T. 1
MATRIX [Moo Momoy]
COMPUTATIONS i - :
i [Dk |
yab ‘/ /
= '\'\“/ TR, YR | o FIG. 1.4.3 Memory Hierarchy
i~ —-_—TH R

thine, but two “axioms;; prevail:

ach level in the hierarchy has a limited capacity and for economic
teasons this capacity is usually smaller as we ascend the hierarchy.

Fhere is a cost, sometimes relatively great, associated with the moving
f data between two levels in the hierarchy.

1996

Pete Beckman Argonne National Laboratory / Northw:

The design of an efficient matrix algorithm requires careful thinking about
the flow of data in between the various levels of storage. The vector touch
anddaf.’re-uaem‘s\mueunportantmthuregard. 9

STCTTIOTIHVCTSITY

Reality:
Efficient = optimize data movement (and power)

We’'ve Hit a Power Ceiling

1,000
|
100 Cal . .
g = == | Comparing Data Movement to Operations
g . . e = 10000 -
8 = x
L [} . . -
= N e 1000
1
8 g 8 2 2 g g g £ 5
T & T T § £ T T A% B
@
data from www.cpedb stanford.edu r 8_100 __¢
21 T " o
ay14,2013 ;oo 3 5 ~#—2008 (45nm)
LN UPLEOLAE D, =
Q ~#-2018 (11nm)
T ()
The Clock Ceiling & 10 -
10,000 : $
i E
L - o
71,000 P L2 S, = T 1 :
g Tl & & S N N S & &
g | LT & & O & & & s ot
5 I 2o & & & N & &
100 34 S o & 3 N\ ¢
e 3 P
S
wo et Courtesy: John Shalf
E & § & & &t 38 & &

NOTRE DAME 013 . . .

Pipelining, load/store, GPGU...

P\ Courtesy: Peter Kogge . o 10
Pete Beckman Argonne National Laboratory / Northwestern University

Old Wisdom:
Parallel Algorithms: Equal Work = Equal Time
(computers run at predictable speeds)

SPMD Code: Divide data into equal sized chucks across p processors

For all timesteps {
exchange data with neighbors

compute on local data
barrier Core CPU Performance Leadership

1.5-3x

CPU Performance
(Specint_2000, Specint_rate2000)
>500 Specint_2000 Higher = Better
in Smartphone

——

Courtesy: Andrew Chien ”
Pete Beckman Argonne National Laboratory / Northwestern University

Reality: Performance is Highly Variable

Memory Hierarchy Depth
(1-150-?)

Ranger Local and Remote Latency
'single-stream pointer-chasing, 128 byte stride

160
Remote reads between chips 0 & 3

140 T ing else

e e e S e P | e

g
Local memory on chips 0 &3 —

- - > > . d

120 R
Remote reads between chips 1 & 2

—r—0-2
=>¢=0-3

1.0

1 ’ ¥ : | s h"—. 182 "
o ocal memary on chips 0
=T ——1-2
80

—13

Latency (ns per load)

2-0

——2-1
——2-2

—4—23

3-0

31

v g 4
20 - [2 / 32
L - 33

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

. B a Se Array Size (kB)

H Turbo Courtesy: McCalpin

]

+ new Non-volatile memory (3,000 cycles)

+ old Non-volatile memory Flash (150,000 cycles)
2009 2015 5
6 Pete Beckman Argonne National Laboratory / Northwestern University Courtesy: Andrew Chien

The New Exascale Reality

. C : il c el forf
— Rapid exponential improvement is over, slow improvement will
continue for awhile... Parallelism explodes, SQUEEEEZE!

. e .

— More operations can better, optimize for locality, data movement,
power

" Computersrunottired,predictablespeed——

— Increasing dynamic and flexible, complication and advantage

13
Pete Beckman Argonne National Laboratory / Northwestern University

What Prevents Scalability?

(in the large and in the small)

" |nsufficient parallelism

— As the problem scales, more parallelism must be found

" |Insufficient latency hiding

— As the problem scales, more latency must be hidden

= |nsufficient resources (Memory, BW, Flops)

— As the problem scales, so must the resources needed

14
Pete Beckman Argonne National Laboratory / Northwestern University

What Prevents Scalability?

(in the large and in the small)

" |nsufficient parallelism

— As the problem scales, more parallelism must be found

Insufficient latency hiding

— As the problem scales, more latency must be hidden

= |nsufficient resources (Memory, BW, Flops)

— As the problem scales, so must the resources needed

As we scale machine, system becomes more dynamic

As we squeeze power, system becomes more dynamic
As we address resilience, system becomes more dynamic
As we share networks, system becomes more dynamic

15
@ Pete Beckman Argonne National Laboratory / Northwestern University

... Google (re-discovers) OS Noise & Contention

Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

Component-Level Variability
Amplified By Scale

A common technique for reducing la-
tency in large-scale online services is to
parallelize sub-operations across many
different machines, where each sub-op-
eration is co-located with its portion of
a large dataset. Parallelization happens
by fanning out a request from a root to
a large number of leaf servers and merg-
ing responses via a request-distribution
tree. These sub-operations must all
complete within a strict deadline for the

Living with Latency Variability

The careful engineering techniques in
the preceding section are essential for
building high-performance interactive
services, but the scale and complexity
of modern Web services make it infea-
sible to eliminate all latency variabil-
ity. Even if such perfect behavior could

6 Pete Beckman

BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

The Tail
at Scale

Probability of one-second service-level response time as the system scales and frequency

Reducing Component Variability

Interactive response-time variability
can be reduced by ensuring interactive
requests are serviced in a timely manner

of server-level high-latency outliers varies.

m== 1in100 === 1in1,000 === 1in10,000

o
oo

o N
=
()]
w

0
E /
% 0 /
>
g s
8 W
8 04
8 e
@ 0.18
0

01

0 | | | |
1 500 1,000 1,500 2,000

Numbers of Servers

Argonne National Laboratory / Northwestern University

16

Exploring Dynamic

2400][][!]]!]IIIIIIIIIIIIIIIIIlI]IIIIIIIIIlIlIIIIIII

— Jaguar/Catamount XT4
— Jaguar/Catamount XT3
~ — Franklin/CNL XT4 -

Franklin/CNL XT4 -
— Franklin/CNL XT4 - Local Memory Management

o
S
-
-

[—
(o))
0
o
|
I

Number of Processors
o0 o
= =
S =
| [

AN

-

-
I

g I
(-

30 140 150 160 170 180

Runtime (seconds)
Dynamic Choices: Fast and Variable..... Slow and Steady...

“Scalability challenges for massively parallel AMR applications”, IPDPS 2009
S Pete Beckman Argonne National Laboratory / NortHw&€Hitis Brigensiban Straalen, John Shalf

Exploring Dynamic

2400][][!]]!]IIIIIIIIIIIIIIIIIlI]IIIIIIIIIlIlIIIIIII

— Jaguar/Catamount XT4
— Jaguar/Catamount XT3
B — Franklin/CNL XT4 - Nominal

Franklin/CNL XT4 - Environment Variables d
— Franklin/CNL XT4 - Local Memory Management

o
S
-
-

[—
(o))
0
o
|
I

Number of Processors
o0 o
= =
S =
| [

AN

-

-
I

g I
(-

30 140 150 160 170 180

Runtime (seconds)
Dynamic Choices: Fast and Variable..... Slow and Steady...

“Scalability challenges for massively parallel AMR applications”, IPDPS 2009
S Pete Beckman Argonne National Laboratory / NortHw&€Hitis Brigensiban Straalen, John Shalf

Dynamic Power and Temp from
Turboboost

pkg0=2600; pkg1=2600 pkg0=2600; pkg1=2601
100,

*-nt; pkgO0
-¢-nt; pkg1
-e-nb; pkg0

nt; pkg0
-e-nt; pkg1

Temperature (° C)
(o))
o
Temperature (° C)
(o))
o

& "oy

-e-nb; pkg0
-°-nb; pkg1 -°-nb; pkg1
20 200 400 600 20, 200 400 600
Increments of 2 Seconds

Increments of 2 Seconds

19
Pete Beckman Argonne National Laboratory / Northwestern University

\
We live with dynamic now... More examples

110W Limit 115W Limit
— CPUPKGO — CPUPKGO
2ol — CPUPKG1 || 2ol — CPUPKG1 ||
N)
E e) E e R R R e et R A Ee S L PR A § g st R S SO S o S5 i
9 g
g]
& =
£ g
2 2.0 Bl v 0 <o i . i B P 1 < . 3 S e 9, e e . P S s 20 e ; 2.0 L NS L | i
© O
1.5 il i s AR N S A R e e e o A S AR S A B e e e AR R e A SN S A S . 1'5 B st S A AR A A S S e |
0 100 200 00, . 40 500 600 0 100 200 300 400 500 600
9.5 : ; - : : , Time [S]
) 9.5 ; ;
G =
| — CPUPKG1

9.0

g =
&85 =
= o
2) -

8.0 8.0 B S S e A R L S S O S L U S e S A e S i A R S S S T e SN S ST s SRS ORI O SRR G ST &N tesessenan -

i 6 160 260 360 460 500 600 75— ' ' ' ' - ‘

2) 100 200 300 400 500 600
Time [S] Time [S] 20

Pete Beckman Argonne National Laboratory / Northwestern University

D
Our Hardware is Dynamic, Adaptive Today! A N

(the future is even more dynamic)

140

Bulk Synchronous is our scaling problem

* #MPI (library that moves data with put/get or send/recv)
e We must focus on dynamic behavior

“0OS Noise” and “jitter” is a legacy distraction

* OS & Runtime must be VERY active...

* Forget that old-school “get out of the way” stuff

Load balancing is necessary, but not sufficient...

e How do we design software in this new era?

* How do we build latency tolerant algs?

e (Can we create tools that measure, learn,
predict, and then improve performance?

150 160 170

21
Pete Beckman Argonne National Laboratory / Northwestern University

How Pliable does node code need to be?
How do we measure pliability?

» | * What is the shape of performance
: distribution?
» | * How much latency do we need to hide?
#| « \What is the cost of dynamic execution?
Y e Re e © Can we build in predictive models?

o

AE Pete Beckman Argonne National Laboratory / Northwestern University

But yet, We Pretend our World is Not
Dynamic

= Trinity/NERSC-

“The system shall provide
runtime (i.e. wall clock time) shall not change by more than 3% from run-to-
run in dedicated mode and 5% in production mode.”

ASCAC Top 10 Research Challenges for Exascale

*“[...] power management [..] through dynamic adjustment of
system balance to fit within a fixed power budget”

*[...] Enabling [...] dynamic optimizations [...] (power, performance,
and reliability) will be crucial to scientific productivity. “

*“[...] Next-generation runtime systems are under development
that support different mixes of several classes of dynamic
adaptive functionality. “

“dynamic” mentioned 43 times in 86 pg report

23

é Pete Beckman Argonne National Laboratory / Northwestern University

Exascale Lesson:

= Code should be as static as possible, but no more so

= 1) Prepare: Create flexibility via over-decomposition, clear expression of
dependencies

= 2) Take small steps to becoming more pliable.... statically
— (static) mapping of resource (slow/fast; heat)
— (static) load balancing (periodic repartitioning)
— (static) dependency graph tiling of stencils to match communication

= 3) Find goal-oriented optimization
— Dynamic lightweight work-sharing
— Dynamic power management

— Dynamic data movement across hierarchy
Code should not consider dynamic a performance error
(e.g. NERSC)

Pete Beckman Argonne National Laboratory / Northwestern University

24

AORDY T,

1 Adaptive Cruise Control

2 Electronic Brake System MK60E

3 Sensor Cluster

4 Gateway Data Transmitter

5 Force Feedback
Accelerator Pedal

6 Door Control Unit
7 Sunroof
Control Unit

'8 Reversible Seatbelt
Pretensioner

9 Seat Control Unit

10 Brakes

11 Closing Velocity Sensor

12 Side Satellites

13 Upfront Sensor

14 Airbag Control Unit

Driver Event Data Active
Transmission Control Night Vision Alertness Recorder CabinNoise ~ Cabin Entertainment
Mission Control, etc.] Monitoring Auto-Dimming Suppression Environment System
Windshield Head-Up Mirror Controls
Wiper Control Accident Battery
Display Interior
Recorder it Voice/Data téac Management
Lighting Communications e
Airba, Engine Instrument | A
Deploymsen(Control Parental Cluster Correction
Controls Electronic
Adaptive Front \ / /Toll Collection
Lighting 4 — -)
2 . — e - Digital Turn Signals
Adaptive Cruise 7 N : , 7 e
S = - y y - — Navigation
Control m S System
Automatic - .
Braking Security System
" , = \ Active Exhaust
Electric I \ Noise Suppression
Power Steering 4 5
- . Antilock Active Suspension
Electronic Throttle idle Jransmission Stabili Braking Hill-Hold
Control Control Iy Control
Stop/Start Active Remote Control
Electronic Vibration Keyless Seat Position parkin Regenerative
Valve Control _Entry Control e Braking
Timing ontro Lane System Tire
Cylinder Blindspot Departure Active Pnefsw:e
De-activation Detection Warning Yaw Monitoring
f’o g '\4, Control
Q\) }\) (o — 28
o R Pete Beckman Argonne National Laboratory / Northwestern University

Absolute mean error (°C)

55 I 1 . H 1 LN 1
541 a5]
53F ’
52F : ’

— '

O :

>~ ¥

o 51f ;]

2

@ 50 4 .

Q i

£ &

() &

- 49} = .

10 . ; ; I = :
Bayes Net - - :
Gaussian Process s . .t .
Linear Regression - - - - = | S ! o . 7]
s | Multilayer Perceptron —-—-—- a !
g REB Tree —--—---
1

50 100 150 200 250 300
Time (second)

Prediction window (second)

Online temperature predictions (blue solid line) versus actual sensor readings (red dotted line)

29
Pete Beckman Argonne National Laboratory / Northwestern University

Human Learning® |

Chicago commute one of nation's most
unpredictable, study suggests

February 05, 2013 | By Jo

= {o
You can predict with a high

that the time it takes to dri
on any given day is unpred

And it's not just snowy or r
any day.

If there is a bright side, it's
the worst.

Y———
41) | " EDGEWATER

Ll

envillesy 75,/55)

NORTH SID

BELMONT
CRAGIN

FImwood Park

—(64

| | —-
p S’)nz llunl..,mnnm.l

105

12‘; —— - 0Over 420 Million Travel Times Collected Since —
» — October 2004 - All Presented In Real Time

85
80
75

T
s
2 e
E 60
@ 55
£ o
; |
< 45
P
& 40
= 3%
n]
IR = = | —
20
15
¥ 3232 3TTIREEEEEEEEEEE

http:/Awww.travelmidweststats.com Time Of Day

)7L NEAR
ISOUTH\SIDE

HYDE PARK

JACKSON PA

1 7 | I D | T n = e o .

Automatically Tuned Linear Algebra Software (ATLAS)
... 15 yrs ago...

500x500 Recursive BLLAS on
433Mhz DEC 21164

€00

Primitive Machine Learning:
“Search and Select” (no humans)

But embarrassingly static....

DSYRK DSYR2K OTRHUM OTRSM

Level 3 BLAS On One Processor of a Sun UltraSparg

300
B Yendor BLAS B ATLAS/GEMM-based BLAS O Reference BLAS
250 4
200 o w5
Multithreaded BILLAS for
Performance
150 1 htel Pentium 11300 MH 2

MFLOPS

400

ATLAS 2 procs
350 TR) B s
100 4 300
. 250 ATLAS 1proc
g 200
= 150
50 4 100
50
0

s O\ iy TR\
BT RS R

S DGEMM DSYMM DSYR2K DSYRK

CP2K Runtime (seconds)

:

:

:

g

o

==pusher =E=shift =*=poisson
1.40E+03

1.20€+03

1.00€+03
=z 8.00E+02
é 6.00E+02

4.00E+02

2.00E402

0.00E+00
1 2 3 6 12

1536 768 512 256 128
OpenMP threads / MPI tasks

Performance of CP2K H20-64 benchmark on the Xeon Phi

GO MPI
(3-£1 OpenMP

&~ MPIIOpenMP - original placement
+—+ MPI/'OpenMP - optimal placement

Total number of cores used

Pete Beckman

time (s)

0.001
1

Number of threads

“The figure shows the performance of MPI,
OpenMP and MPI+OpenMP versions of CP2K.
The blue diamonds show the original
performance with poor task placement. The
green line shows the final result with optimal
placement. This obtained better performance
than both the MPI and OpenMP versions and
enabled more virtual threads to be used. The
best placement was found to be a balanced
approach where each of the 60 physical cores
have as few threads as possible whilst also
keeping the threads belonging to a particular
MPI process physically close to one another.”

32

Argonne National Laboratory / Northwestern University

OpenMP has less scalability due to implicit parallelism while MPI
allows multi-dimensional blocking.

All threads are idle except one while MPI communication.
— Need overlap comp and comm for better performance.
— Critical Section for shared variables.

Thread creation overhead

Cache coherence, false sharing.

Data placement, NUMA effects.

Natural one level parallelism problems.

Pure OpenMP code performs worse than pure MPI within node.
Lack of optimized OpenMP compilers/libraries.

NPB 3.3 BT C 24 (1 Node) Hybrid Benchmark
250.00 1.2

200.00 \
—— 08 3
£ 15000 S > mpol
= 06 © Mmcray
3 © 8 [Pathscale
S 10000 S mon
‘;‘, 0.4 % ~—Mem(GB)
=
- I] I] I])
0.00 0
1 2 3 4 6 8 12 24
OpenMP Threads per Node aprun-n 4-d6...

350.00

300.00

250.00

200.00

150.00

Wall Clock Time

100.00

50.00

0.00

aprun-n4-S1-d6...

Debugger tools: DDT, Totalview, gdb, Valgrind.
Profiling: IPM, CrayPat, TAU.

Decide which loop to parallelize. Better to parallelize outer loop. Decide
whether Loop permutation, fusion or exchange is needed. Use NOWAIT
clause if possible.

Choose between loop-based or SPMD.
Use different OpenMP task scheduling options.

Experiment with different combinations of MPI tasks and number of
Bhregdg ﬁr MPI task. Less MPI tasks may not saturate inter-node
andwidth.

Adjust environment variables.

Aggressively investigate different thread initialization options and the
possibility of overlapping communication with computation.

Try OpenMP TASK.

Leave some cores idle on purpose: memory capacity or bandwidth
capacity.

Try different compilers.

Pete Beckman

NPB 3.3 LU C 16 (1 Node) Hybrid Benchmark PRI (rence Berkeie
3 1.1
\‘\ 0.9
\,\ 0.7
e [J2le]
M Cray
05 [pathscale
M Gnu
03 —Mem(GB)
0.1
201
1 2 3 6 12 24
eads Per Node
33

Argonne National Laboratory / Northwestern University

Argonne’s Next Big Machine: Aurora

6 Pete Beckman Argonne National Laboratory / Northwestern University

Argonne’s Aurora Details

System Feature Aurora

Peak System performance (FLOPs) 180 - 450 PetaFLOPS

Processor 3"d Generation Intel® Xeon Phi™ processor (code name Knights Hill)
Number of Nodes >50,000

Compute Platform Cray Shasta next generation supercomputing platform

High Bandwidth On-Package Memory, Local

Memory, and Persistent Memory 2l FEEIIEE

System Interconnect 2"d Generation Intel® Omni-Path Architecture with silicon photonics
Interconnect interface Integrated

Burst Storage Buffer Intel® SSDs, 2"d Generation Intel® Omni-Path Architecture

File System Intel Lustre* File System

File System Capacity >150 PetaBytes

File System Throughput >1 TeraByte/s

Intel Architecture (x86-64) Compatibility Yes

Peak Power Consumption 13 Megawatts
FLOPS/watt >13 GFLOPS/watt
Delivery Timeline 2018
Facility Area ~3,000 sq. ft.
*f“{'-m’tw
ow‘i‘ﬁ—if— Pete Beckman Argonne National Laboratory / Northwestern University -

p—
-

Conclusions: The Times They are A-Changin’

= Embrace DYNAMIC!
— Work # Time

= Optimize algorithms for data movement
= Learn to love runtime systems

= Explore adaptive, learning, predictive software
stacks that takes humans out of the loop...

— Sorry humans, you are too slow.
— Reject human tuning papers...

— System software stack must stop being forgetful.....

* mpiexec -n 1048576 a.out EXASCALE NODE ARCHITECTURE* e

INTEGRATED PROCESSING AND MEMORY FOR
PERFORMANCE AND EFFICIENCY

e mpiexec -n 1048576 a.out

@ Pete Beckman Argonne National Laboratory / Northwestern Universit;/

Questions?

Argonne National Laboratory / Northwestern University

37

