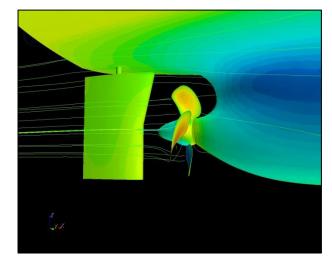
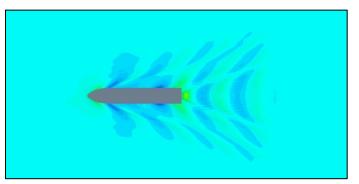


HPC and CFD in the Marine Industry: Past, Present and Future

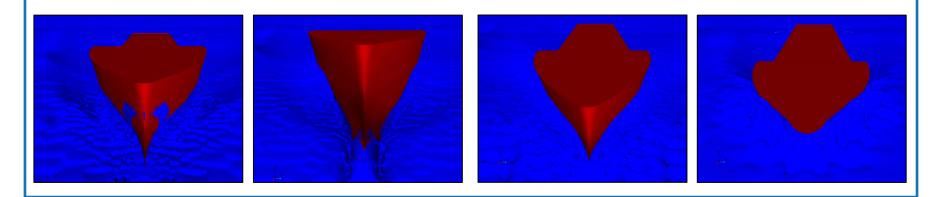
Kurt Mizzi, Paula Kellett, Yigit Kemal Demirel, Osman Turan, Richard Martin


Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde


23rd April 2015 Edinburgh

Overview

- Introduction
- Importance of CFD in Naval Architecture
- Past Computational Limits
- Current State of the Art
 - Ship Resistance and Fouling
 - Ship Radiated Underwater Noise
 - Propeller Boss Cap Fins
- Future Possibilities
- Concluding Remarks

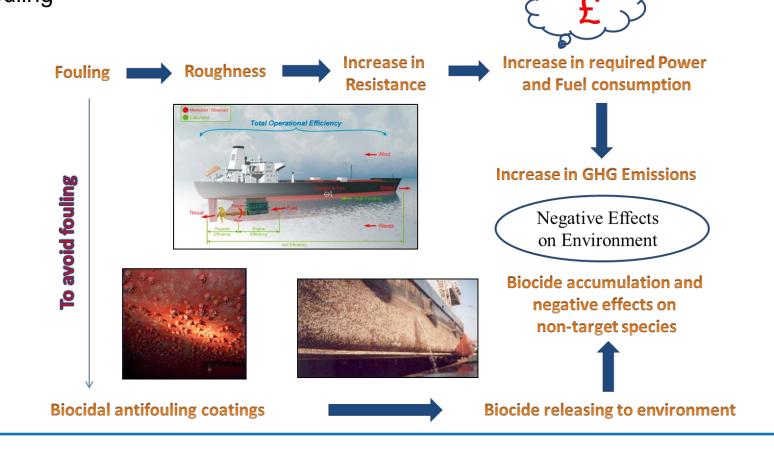


Introduction

- CFD stands for Computational Fluid Dynamics
- Presenting HPC from the viewpoint of a user
- Demonstrate an application of high performance computing
- Highlight the importance of these capabilities for the marine sector and in particular for industry

Importance of CFD in Naval Architecture

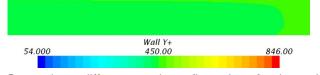
- It is not feasible to build proto-types
- There are long timescales for design and build
- Model scale experiments are costly and time-consuming
- Errors associated with experiments can be significant
- There are limits to what can be re-created and measured in model scale experiments


Past Computational Limits

• Use of potential flow / panel method approaches which neglect the viscosity of water

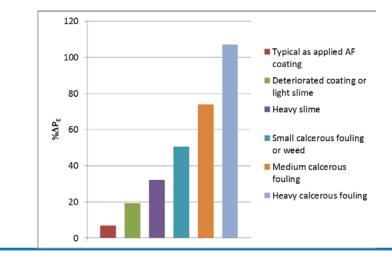
- Limited mesh sizes and refinement due to computational demand, leading to lack of accuracy
- Limit to geometrical complexity which can be studied
- Time-consuming convergence meant design variations and optimization were not possible

Current State of the Art: Ship Resistance and Fouling



Current State of the Art: Ship Resistance and Fouling

		an a		Mesh configuration	Total No. Cells	C _F (CFD)
				Coarse	1.8 x10 ⁶	0.001574
				Medium	2.5 x10 ⁶	0.001576
		++++, / / / / / / /		Fine	4 x10 ⁶	0.001584
Mesh	Total No. Cells	C _F (CFD)	% Experiment	Very Fine	5.5 x10 ⁶	0.001584
configuration	1.5 x10 ⁶	[]	r 1	0.0045389	Roughness Reynolds r 0.11203 0.21953 0.	number 32702 0.43452 0.54
Coarse		[]	[]			
Medium	2.5 x10 ⁶	0.003805	0.60			and the second se
Fine	4 x10 ⁶	0.003776	-0.19			
Very Fine	6 x10 ⁶	0.003785	0.07			
THM COM			STAR-CCM+		Silicone 1	Silicone 2
					Ablative Copper	SPC Copper
			L.			

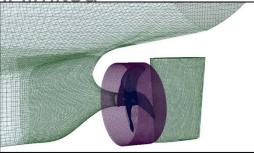


Current State of the Art: Ship Resistance and Fouling

 C_{F} results at different mesh configurations for the tanker

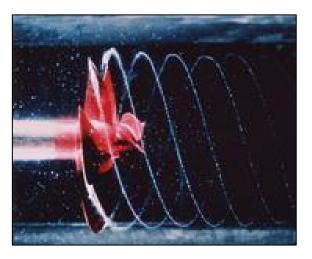
Mesh configuration	Total No. of Cells	C _F (CFD)
Coarse	1.7 x 10 ⁶	0.0020929
Medium	2.5 x10 ⁶	0.00209312
Fine	4.2 x10 ⁶	0.0021030

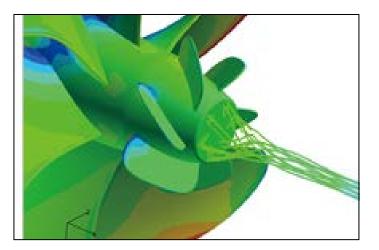
60.000	Wall Y+ 3075.0	6090.0	
C _F results at d	ifferent mesh configurat containership	tions for the	
Mesh configuration	Total No. of Cells	C _F (CFD)	
Coarse	2.2 x 10 ⁶	0.0020086	
Medium	3.3 x 10 ⁶	0.0020145	
Fine	5.5 x 10 ⁶	0.0020222	
8 - O Schul	Press function model tz and Flack (2007)		
0 <u>6 0 22 11</u> 11	10 ² k ⁺	<u> </u>	



Current State of the Art: Ship Radiated Underwater Noise

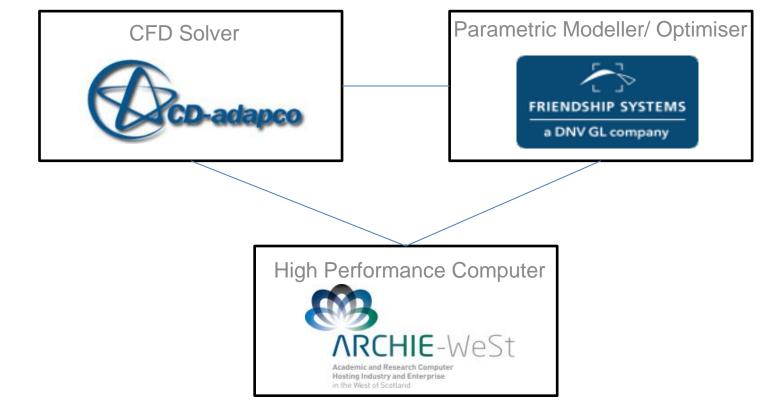
- The prediction of ship radiated noise at design stage is becoming increasingly important in the marine industry
- Current computation capabilities allow simulation of vessel in full scale, removing scaling errors
- Simulations can include a rotating propeller geometry
- Simulations generally only in calm and deep water conditions
- Prediction of cavitation behaviour and noise still limited





Current State of the Art: Propeller Boss Cap Fins

Experimental Methods



CFD Methods

Propeller Boss Cap Fins: Tools

Propeller Boss Cap Fins: Further Studies

Hub Vortex

Hub Vortex Reduction

Future Possibilities

- Access to Exascale computing capacity will allow for finer meshes, more complex simulations and more realistic scenarios
- However future development will also be dictated by:
 - Political "hot topics"
 - Changes in regulation
 - Availability of funding and facilities
 - Trust in CFD by industry
 - Industry drivers for research
 - Ability to store and post-process generated data

Closing Remarks

 Advent of HPC's has allowed use of CFD in naval architecture applications

• CFD is beginning to replace model scale experiments

• Current simulations are still limited in size, complexity and accuracy by computational capability

• Moving to exascale computing will allow much more realistic and complex simulations, with more refined meshes and fewer assumptions

• However the marine industry also needs to develop greater trust in CFD to take full advantage of future possibilities

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263