
Porting CASTEP to GPGPUs

Adrian Jackson, Toni Collis,

EPCC, University of Edinburgh

Graeme Ackland

University of Edinburgh

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

CASTEP

• Density Functional Theory

–Plane-wave basis set with pseudo
potentials

–Heavy use of FFTs

–FORTRAN (modern) and MPI for
parallelisation

–plane-waves, k-points and bands data
decompositions

• Significant use on UK HPC systems

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

CASTEP Scaling

10

100

1000

10000

1 10 100 1000

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Processes

CASTEP Scaling

CASTEP

Ideal

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

Capabilities
• Hamiltonians
• DFT XC-functionals LDA, PW91, PBE, RPBE, PBEsol, WC
• Hybrid functionals PBE0, B3LYP, sX-LDA, the HSE family of functionals (including user-defined parameterisation)
• LDA+U and GGA+U
• Semi-empirical dispersion corrections (DFT+D)
• Structural methods
• Full variable-cell geometry optimisation using BFGS, LBFGS and TPSD
• Geometry optimisation using internal co-ordinates
• Geometry optimisation using damped molecular dynamics
• Transition-state search using LST/QST method
• Molecular Dynamics
• Molecular Dynamics including fixed and variable-cell MD
• NVE, NVT, NPH and NPT ensembles
• Path-integral MD for quantum nuclear motion
• Vibrational Spectroscopy
• Phonon dispersion and DOS over full Brillouin-Zone using DFPT methods
• Phonon dispersion and DOS over full Brillouin-Zone using supercell methods
• IR and raman intensities
• Dielectric Properties
• Born effective charges and dielectric permittivity
• Frequency-dependent dielectric permittivity in IR range
• Wannier Functions
• Electrostatic correction for polar slab models
• Solid-state NMR spectroscopy
• Chemical Shifts
• Electric Field Gradient tensors
• J-coupling
• Optical and other Spectroscopies
• EELS/ELNES and XANES Spectra
• Optical matrix elements and spectra
• Electronic properties
• Band-structure calculations
• Mulliken population analysis
• Hirshfeld population analysis
• Electron Localisation Functions (ELF)
• Pseudopotentials
• Supports Vanderbilt ultrasoft and norm-conserving pseudopotentials
• Built in "On The Fly" pseudopotential generator
• Self-consistent Pseudpotentials
• (non self-consistent) PAW for properties calculations
• Electronic Solvers
• Block Davidson solver with density mixing
• Ensemble DFT for metals

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

Motivation

• Demonstrator
– Investigate whether it makes sense
– What data transfers are necessary
– CASTEP 7.0
– No divergence from mainstream
– No intrusion into physics

• Single GPU
– Large simulations on desktop

• Multiple GPU
– Utilise large GPU’d systems
– Enable future UK HPC systems to be

GPU’d

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

CASTEP: initial accelerator investigation

• Replace blas calls with cula

– (cuda-blas library
http://www.culatools.com/)

• Replace fft calls with cufft
– NLCX and Geometry Optimisation

– Small simulation, to fit on one CPU, no MPI
calls. 4 Ti atoms, 2 O atoms, total of 32
electrons.

• No device calls runtime = 14.6s

• Cula blas calls runtime = 31.1s

• Cula blas and cufft calls runtime = 418s.

Majority of the increased runtime was
due to data transfer.

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

GPUification of CASTEP

• Aim:
– remove data transfer problems by placing most

of the large data structures on the GPU.

– Use OpenACC kernels, PGI CUDA fortran, cula
blas and cufft.

• The process:
– ‘All or nothing’ approach, moving large data

structures onto the GPU and all affected
routines/functions (approximately 50
subroutines)

– Focus on the serial version first.

– After initial compilation expect to spend some
time optimising, particularly data transfers

– Move onto mpi version.

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

OpenACC Directives

• With directives inserted, the
compiler will attempt to compile
the key kernels for execution on
the GPU, and will manage the
necessary data transfer
automatically.

• Directive format:
–C: #pragma acc ….

–Fortran: !$acc ….

• These are ignored by non-
accelerator compilers

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

OpenACC

PROGRAM main

INTEGER :: a(N)

…

!$acc data copy(a)

!$acc parallel loop

DO i = 1,N

a(i) = i

ENDDO

!$acc end parallel
loop

CALL double_array(a)

!$acc end data

…

END PROGRAM main

SUBROUTINE double_array(b)

INTEGER :: b(N)

!$acc kernels loop present(b)

DO i = 1,N

b(i) = 2*b(i)

ENDDO

!$acc end kernels loop

END SUBROUTINE double_array

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

GPUification of CASTEP

Data structures on device
• Wavefunctions:

– complex(kind=dp) :: Wavefunction%coeffs(:,:,:,:)

– complex(kind=dp) :: Wavefunction%beta_phi(:,:,:,:)

– real(kind=dp) :: Wavefunction%beta_phi_at_gamma(:,:,:,:)

– logical :: Wavefunction%have_beta_phi(:,:)

– complex(kind=dp) :: Wavefunctionslice%coeffs(:,:)

– complex(kind=dp) :: Wavefunctionslice%realspace_coeffs(:,:)

– real(kind=dp) ::

Wavefunctionslice%realspace_coeffs_at_gamma(:,:)

– logical :: Wavefunctionslice%have_realspace(:)

– complex(kind=dp) :: Wavefunctionslice%beta_phi(:,:)

– real(kind=dp) :: Wavefunctionslice%beta_phi_at_gamma(:,:)

• Bands
– complex(kind=dp) :: coeffs(:)

– complex(kind=dp) :: beta_phi(:)

– real(kind=dp) :: beta_phi_at_gamma(:)

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

Example use of kernels
subroutine wave_copy_wv_wv_ks

……

!$acc kernels present_or_copy(wvfn_dst, wvfn_src)

!Map reduced representation of coefficients on k-point

do nb=1,nbands_to_copy

recip_grid = cmplx_0

call

basis_recip_reduced_to_grid(wvfn_src%coeffs(:,nb,nk_s,ns_s),nk_src,recip_grid,'S

TND')

call

basis_recip_grid_to_reduced(recip_grid,'STND',wvfn_dst%coeffs(:,nb,nk_d,ns_d),nk

_dst)

end do

……

! copy rotation data

……

do nb=1,nbands_to_copy

do nb2=1,nbands_to_copy

wvfn_dst%rotation(nb,wvfn_dst%node_band_index

(nb2,id_in_bnd_group),nk_dst,ns_dst) = &

&

wvfn_src%rotation(nb,wvfn_src%node_band_index(nb2,id_in_bnd_group),nk_src,ns_src

)

end do

end do

……

!$acc end kernels

end subroutine wave_copy_wv_wv_ks

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

GPUification of CASTEP
• Module procedures used throughout the code

– Multiple calls for all the core kernels

• Module procedures support different data structures for same call
– Interface chooses different routines

• CASTEP uses language options that are not supported on devices,
such as the use of ‘optional’ types when passing data to
subroutines followed by ‘if present’ statements.

– Resolved by creating copies of subroutines with and without optional
arguments.

• Specifying arrays with dimension(*) when passing to subroutines

– Resolved by specifying correct dimension structure, sometimes
requiring multiple copies of subroutines

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m subroutine

basis_real_to_recip_gamma(grid,grid_type,num_grids,gamma)

real(kind=dp), dimension(*), intent(inout) :: grid

character(len=*), intent(in) :: grid_type

complex(kind=dp), dimension(*), intent(out) :: gamma

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

Example modification

interface basis_real_to_recip_gamma

module procedure basis_real_to_recip_gamma_1d

module procedure basis_real_to_recip_gamma_2d_grid

module procedure basis_real_to_recip_gamma_2d_gamma

module procedure basis_real_to_recip_gamma_2d_grid_2d_gamma

module procedure basis_real_to_recip_gamma_3d_gamma

module procedure basis_real_to_recip_gamma_3d_grid_3d_gamma

end interface

subroutine basis_real_to_recip_gamma_2d_grid_2d_gamma(grid,grid_type,num_grids,gamma)

implicit none

integer, intent(in) :: num_grids

real(kind=dp), dimension(:,:), intent(inout) :: grid

character(len=*), intent(in) :: grid_type

complex(kind=dp), dimension(:,:), intent(out) :: gamma

real(kind=dp), dimension(:), allocatable :: temp_grid

complex(kind=dp), dimension(:), allocatable :: temp_gamma

allocate(temp_grid(size(grid)))

allocate(temp_gamma(size(gamma)))

temp_grid = reshape(grid,shape(temp_grid))

temp_gamma = reshape(gamma,shape(temp_gamma))

call basis_real_to_recip_gamma_inner(temp_grid,grid_type,num_grids,temp_gamma)

grid = reshape(temp_grid,shape(grid))

gamma = reshape(temp_gamma,shape(gamma))

deallocate(temp_grid,temp_gamma)

end subroutine basis_real_to_recip_gamma_2d_grid_2d_gamma

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

GPUification of CASTEP
• Data that is involved in I/O needs to be taken off the device

(copies of data need to be made):

Original code (from ion.CUF):

read(wvfn%page_unit,REC=record,iostat=status)

((wvfn%coeffs(np,nb,1,1),np=1,wvfn%waves_at_kp(nk)),nb=1,wvfn

%nbands_max)

New code:

read(wvfn%page_unit,REC=record,iostat=status)

((coeffs_tmp,np=1,wvfn%waves_at_kp(nk)),nb=1,wvfn%nbands_max)

wvfn%coeffs(np,nb,1,1) = coeffs_tmp

• Sometimes the limitations of what is on and off the device results in
multiple!$acc kernel regions very close together, and not the entire
subroutines, which is not necessarily very efficient. Will require a lot of
fine tuning to improve performance.

• Currently still working on successfully compiling the serial code.

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

GPUification of CASTEP
Still an ongoing project

• Very closed to having the first version of the software
ported to device

• Expect this to be optimised to improve performance and
minimise data transfer

• Using the PGI compiler (in order to use OpenACC) has
resulted in multiple compiler issues
– tmp files not being correctly understood – no clear error message

– Compiler failing on large files

– Complex number functions in Fortran not currently compatible with
OpenACC.

– Deep data copy not handled

Next step: OpenACC+MPI implementation.

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

Reduced port of CASTEP

• Porting the full program to difficult
– Unsupported features and compiler

immaturity
– Low-level changes affected too much code
– Change approach to port contained

functionality

• Particular feature (nlxc calculation)
• Work from bottom up rather than top

down
– Port lowest level kernels, then move data

regions successively higher
– Rather than porting the data structures then

altering all associated code to work with
those structures

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

CASTEP Performance

Time (s) Speedup

1 process 6442.45

2 processes 4368.15 1.47

4 processes 2183.26 2.95

8 processes 2147.57 2.99

16 processes 1489.48 4.32

32 processes 936.59 6.88

64 processes 741.37 8.69

1 GPU 1894.67 3.4

h
t
t
p
:
/
/
w
w
w
.
n
u
-
f
u
s
e
.
c
o
m

Summary
Porting CASTEP to GPGPUs using OpenACC and
CUDA libraries

• Full program defeated us
– Still porting a large amount of the core kernels but not having to

update the whole program

• OpenACC has moved on and so have the compilers
– Much better now, but still not trivial

• OpenACC is not OpenMP
– Similar in the sense it is easy to get something to work but harder to

get full performance

– Hides much worse data operations

– Bad OpenMP will scale a bit

– Bad (not well structured) OpenACC will go much slower than serial

• How do you cope with modifications in the source code to
enable GPU usage?

