-F'uSE

Porting CASTEP to GPGPUs

Adrian Jackson, Toni Collis,
EPCC, University of Edinburgh

Graeme Ackland

University of Edinburgh

CASTEP

e Density Functional Theory

- Plane-wave basis set with pseudo
potentials

- Heavy use of FFTs

- FORTRAN (modern) and MPI for
parallelisation

- plane-waves, k-points and bands data
decompositions

e Significant use on UK HPC systems

=
O
O
()
)
3
Q|-I
3
c
E
~
oF
)
)
S

: -Planck-Instiiu - £on ol
=0 €PCC| R [l o Ay yoLich - =PPPL @

CASTEP Scaling

CASTEP Scaling

=== CASTEP
== |deal

1 10 100 1000
Number of Processes

=
0
O
()
)
3
Q|-I
3
o
E
~
oF
)
)
S

. ' W rﬁ' e
o epcC| @R [l tnimss Ay oucH s SPPPL &)

Capabilities

Hamiltonians

DFT XC-functionals LDA, PW91, PBE, RPBE, PBEsol, WC

Hybrid functionals PBEO, B3LYP, sX-LDA, the HSE family of functionals (including user-defined parameterisation)
LDA+U and GGA+U

Semi-empirical dispersion corrections (DFT+D)

Structural methods

Full variable-cell geometry optimisation using BFGS, LBFGS and TPSD
Geometry optimisation using internal co-ordinates

Geometry optimisation using damped molecular dynamics
Transition-state search using LST/QST method

Molecular Dynamics

Molecular Dynamics including fixed and variable-cell MD

NVE, NVT, NPH and NPT ensembles

Path-integral MD for quantum nuclear motion

Vibrational Spectroscopy

Phonon dispersion and DOS over full Brillouin-Zone using DFPT methods
Phonon dispersion and DOS over full Brillouin-Zone using supercell methods
IR and raman intensities

Dielectric Properties

Born effective charges and dielectric permittivity
Frequency-dependent dielectric permittivity in IR range

Wannier Functions

Electrostatic correction for polar slab models

Solid-state NMR spectroscopy

Chemical Shifts

Electric Field Gradient tensors

J-coupling

Optical and other Spectroscopies

EELS/ELNES and XANES Spectra

Optical matrix elements and spectra

Electronic properties

Band-structure calculations

Mulliken population analysis

Hirshfeld population analysis

Electron Localisation Functions (ELF)

Pseudopotentials

Supports Vanderbilt ultrasoft and norm-conserving pseudopotentials
Built in "On The Fly" pseudopotential generator

Self-consistent Pseudpotentials

(non self-consistent) PAW for properties calculations

Electronic Solvers

Block Davidson solver with density mixing

Ensemble DFT for metals

. ' > £ N
e |ePCC| §R [l St 4 joucH 24k =5PPPL

=
0
U
0
7
3
*
3
o
~§
~

http

Motivation

e Demonstrator
— Investigate whether it makes sense
- What data transfers are necessary
— CASTEP 7.0
— No divergence from mainstream
— No intrusion into physics

e Single GPU
- Large simulations on desktop

e Multiple GPU

— Utilise large GPU’d systems

— Enable future UK HPC systems to be
GPU'd

=
O
O
()
)
3
Q|-I
3
c
E
~
oF
)
)
S

: -Planck-Instiiu - £on ol
=0 €PCC| R [l o Ay yoLich - =PPPL @

CASTEP: initial accelerator investigation

e Replace blas calls with cula

— (cuda-blas library
http://www.culatools.com/)

e Replace fft calls with cufft
— NLCX and Geometry Optimisation

- Small simulation, to fit on one CPU, no MPI
calls. 4 Ti atoms, 2 O atoms, total of 32
electrons.

e No device calls runtime = 14.6s
e Cula blas calls runtime = 31.1s
e Cula blas and cufft calls runtime = 418s.

Majority of the increased runtime was
due to data transfer.

=
O
O
()
)
3
Q|-I
3
c
E
~
oF
)
)
S

: -Planck-Instiiu - £on ol
=0 €PCC| R [l o Ay yoLich - =PPPL @

GPUification of CASTEP

e Aim:
- remove data transfer problems by placing most
of the large data structures on the GPU.
- Use OpenACC kernels, PGI CUDA fortran, cula
blas and cufft.
e The process:

— "All or nothing’ approach, moving large data
structures onto the GPU and all affected
routines/functions (approximately 50
subroutines)

— Focus on the serial version first.

— After initial compilation expect to spend some
time optimising, particularly data transfers

- Move onto mpi version.

=
O
O
()
)
3
Q|-I
3
c
E
~
oF
)
)
S

: -Planck-Instiiu - £on ol
=0 €PCC| R [l o Ay yoLich - =PPPL @

OpenACC Directives

e With directives inserted, the
compiler will attempt to compile
the key kernels for execution on
the GPU, and will manage the
necessary data transfer
automatically.

e Directive format:
- C: #pragma acc

— Fortran: !Sacc

e These are ignored by non-
accelerator compilers

: -Planck-Instiiu - £on ol
=0 €PCC| R [l o Ay yoLich - =PPPL @

=
O
O
()
)
3
Q|-I
3
c
E
~
oF
)
)
S

OpenACC

END SUBROUTINE double_array
CALL double_array(a)

!'Sacc end data

g PROGRAM main

0 INTEGER :: a(N)

q; '$;..CC data co (a) SUBROUTINE double_array (b)
0 . By INTEGER :: b(N)

a] lSacc parallel loop

(Tl DO i = 1.N !Sacc kernels loop present (b)
| . DO i = 1,N

3 2l =3 b(i) = 2*b(1)

c | ENDDO S

E. . $?_(é(épend parallel 'Sacc end kernels loop
™~

™~

END PROGRAM main

http

0 ePCCl @R [l St) J0ucH e, SERPL @

GPUification of CASTEP

Data structures on device

e Wavefunctions:

— complex (kind=dp) :: Wavefunction%coeffs(:,:,:,:)

— complex (kind=dp) :: Wavefunction%beta_phi(:,:,:,:)

— real (kind=dp) :: Wavefunction%beta_phi_at_gamma(:,:,:,:)

— logical :: Wavefunction$have_beta_phi(:,)

— complex (kind=dp) :: Wavefunctionslice%coeffs(:, :)

— complex (kind=dp) :: Wavefunctionslice$%realspace_coeffs(:,:)

— real (kind=dp)
Wavefunctionslice$%realspace_coeffs_at_gamma(:, :)

=
0
U
0
7
3
b
3
o
E
~

— logical :: Wavefunctionslice$Shave_realspace(:)
— complex (kind=dp) :: Wavefunctionslice%beta_phi(:, :)
— real (kind=dp) :: Wavefunctionslice%$beta_phi_at_gamma(:, :)
X ¢ Bands
‘l' — complex (kind=dp) :: coeffs(:)
ij — complex (kind=dp) :: beta_phi(:)
e - real(kind=dp) :: beta_phi_at_gamma(:)

: - - i -- rﬁ'ﬁ ._M:Q:.
0| epcC|) Ml iy Ay joucH . SPPPL S

Example use of kernels

EE subroutine wave_copy_wv_wv_ks
() !Sacc kernels present_or_copy (wvfn_dst, wvfn_src)
() !Map reduced representation of coefficients on k-point
° do nb=1, nbands_to_copy
q) recip_grid = cmplx_0
call
U) basis_recip_reduced_to_grid(wvfn_src%$coeffs(:,nb,nk_s,ns_s),nk_src,recip_grid, 'S
5 TND')
q_l call
l basis_recip_grid_to_reduced(recip_grid, 'STND',wvfn_dst%coeffs(:,nb,nk_d,ns_d),nk
_dst)
:3 end do
:E ! copy rotation data
do nb=1,nbands_to_copy
do nb2=1,nbands_to_copy
wvfn_dst%rotation (nb,wvfn_dst%node_band_index
~\- (nb2,id_in_bnd_group),nk_dst,ns_dst) = &
&
‘\\ wvfn_src%rotation (nb,wvfn_src%node_band_index(nb2,id_in_bnd_group),nk_src,ns_src
[N J)
end do
end do

!Sacc end kernels

oF
)
)
S

end subroutine wave_copy_wv_wv_ks

. ' - £ N
0| epcC|) Ml iy Ay joucH . SPPPL S

GPUification of CASTEP

e Module procedures used throughout the code
- Multiple calls for all the core kernels

e Module procedures support different data structures for same call
— Interface chooses different routines

o CASTEP uses language options that are not supported on devices,
such as the use of '‘optional’ types when passing data to
subroutines followed by ‘if present’ statements.

— Resolved by creating copies of subroutines with and without optional
arguments.

e Specifying arrays with dimension (*) when passing to subroutines

— Resolved by specifying correct dimension structure, sometimes
requiring multiple copies of subroutines

/ /www.nu-fuse.com

3 http

SpPCC @ Ll ilehandchsit Ay JGLICH ﬁ.urn SPPPL (& @

subroutine
basis_real_to_recip_gamma (grid,grid_type, num_grids, gamma)

real (kind=dp), dimension(*), intent(inout) :: grid
character (len=*), intent(in) :: grid_type
complex (kind=dp), dimension(*), intent (out) :: gamma

=
0
U
0
7
3
b
3
o
E
~

http

. - - Instifu - fom ol
0| epcC|) Ml iy Ay joucH . SPPPL S

module
module
module
module
module

module

integer,

=
0
U
0
7
3
b
3
o
E
~

gamma =

http

real (kind=dp),

real (kind=dp),

procedure
procedure
procedure
procedure
procedure

procedure

end interface

implicit none

intent (in

character (len=%*),

complex (kind=dp),

complex (kind=dp),

Example modification

interface basis_real_to_recip_gamma

basis_real_to_recip_gamma_1ld
basis_real_to_recip_gamma_2d_grid
basis_real_to_recip_gamma_2d_gamma
basis_real_to_recip_gamma_2d_grid_2d_gamma
basis_real_to_recip_gamma_3d_gamma

basis_real_to_recip_gamma_3d_grid_3d_gamma

subroutine basis_real_ to_recip_gamma_2d_grid_2d_gamma (grid, grid_type,num_grids, gamma)

) :: num_grids

dimension(:, :), intent(inout) :: grid

intent (in) :: grid_type

dimension(:,:), intent(out) :: gamma
dimension(:), allocatable :: temp_grid

dimension(:), allocatable :: temp_gamma

allocate (temp_grid(size(grid)))

allocate (temp_gamma (size (gamma)))

temp_grid = reshape(grid, shape (temp_grid))
temp_gamma = reshape (gamma, shape (temp_gamma))
call basis_real_to_recip_gamma_inner (temp_grid,grid_type, num_grids, temp_gamma)

grid = reshape (temp_grid, shape (grid))

reshape (temp_gamma, shape (gamma))

o epcc@

deallocate (temp_grid, temp_gamma)

end subroutine basis_real_to_recip_gamma_2d_grid_2d_gamma

i - H?}i -y
e) jouicH i SPPPL &)

/ /www.nu-fuse.com

3 http

GPUification of CASTEP

e Data that is involved in I/O needs to be taken off the device
(copies of data need to be made):

Original code (from ion.CUF):

read (wvfn%page_unit, REC=record, iostat=status)
((wvin¥coeffs(np,nb,1,1),np=1,wvinswaves_at_kp(nk)),nb=1,wvin
Tnbands_max)

New code:

read (wvin%page_unit,REC=record, iostat=status)
((coeffs_tmp,np=1,wvinswaves_at_kp(nk)),nb=1,wvinsnbands_max)

wvinscoeffs(np,nb,1,1) = coeffs_tmp

e Sometimes the limitations of what is on and off the device results in
multiple! sacc kernel regions very close together, and not the entire
subroutines, which is not necessarily very efficient. Will require a lot of
fine tuning to improve performance.

e Currently still working on successfully compiling the serial code.

' ™ gam)
epcC| @) Ell i A jouch . =PPPL &)

GPUification of CASTEP

Still an ongoing project

e Very closed to having the first version of the software
ported to device

e Expect this to be optimised to improve performance and
minimise data transfer

e Using the PGI compiler (in order to use OpenACC) has
resulted in multiple compiler issues

— tmp files not being correctly understood - no clear error message
— Compiler failing on large files

— Complex number functions in Fortran not currently compatible with
OpenACC.

— Deep data copy not handled
Next step: OpenACC+MPI implementation.

' ™ gam)
epcC| @) Ell i A jouch . =PPPL &)

=
(o)
@)
()
)
3
N
3
c
;
~
oF
i)
)
e
e

Reduced port of CASTEP

e Porting the full program to difficult

- Unsupported features and compiler
immaturity

- Low-level changes affected too much code
— Change approach to port contained
functionality
e Particular feature (nIxc calculation)

e Work from bottom up rather than top
down

- Port lowest level kernels, then move data
regions successively higher

— Rather than porting the data structures then
altering all associated code to work with
those structures

=
O
O
()
)
3
Q|-I
3
c
E
~
oF
)
)
S

: -Planck-Instiiu - £on ol
=0 €PCC| R [l o Ay yoLich - =PPPL @

CASTEP Performance

] T T
U 1 process 6442.45
8 2 processes 4368.15 1.47
ta 4 processes 2183.26 2.95
é 8 processes 2147.57 2.99

; 16 processes 1489.48 4.32
E 32 processes 936.59 6.88
N
N 64 processes 741.37 8.69

1 GPU 1894.67 3.4

oF
)
)
S

d

g -Flanck-Institu w dom N
epcC|@ Wl e Ay jouck . PPPL &

a

Summary

Porting CASTEP to GPGPUs using OpenACC and
CUDA libraries

e Full program defeated us
— Still porting a large amount of the core kernels but not having to
update the whole program
e OpenACC has moved on and so have the compilers
— Much better now, but still not trivial

. OpenACC is not OpenMP

Similar in the sense it is easy to get something to work but harder to
get full performance

- Hides much worse data operations
- Bad OpenMP will scale a bit
— Bad (not well structured) OpenACC will go much slower than serial

e How do you cope with modifications in the source code to
enable GPU usage?

SpPCC @ Ll ilehandchsit Ay JGLICH ﬁ.urn SPPPL (& @

/ /www.nu-fuse.com

3 http

