
Evaluating New Communication
Models in the Nek5000 Code for

Exascale

Ilya Ivanov (KTH), Rui Machado (Fraunhofer), Mirko Rahn
(Fraunhofer), Dana Akhmetova (KTH), Erwin Laure (KTH), Jing
Gong (KTH), Philipp Schlatter (KTH), Dan Henningson (KTH),

Paul Fischer (ANL), Stefano Markidis (KTH)

Outline

•  Parallelism, Programming Models and
Legacy Applications at Exascale

•  Nek5000 code
•  Parallel Communication in Nek5000
–  Gather-Scatter Communication Operator
–  New MPI Gather-Scatter Communication Operator
–  New PGAS Gather-Scatter Communication Operator

•  Conclusions

Parallelism at Exascale
•  Tianhe-2 (#1 in Top500) has 3,120,000

cores in total, much larger number of
processes at exascale ! billion of
processes.

•  At exascale:
•  Interconnection networks with higher performance

(smaller latency, larger bandwidth)
•  Emerging new network topologies, i.e. Slim Fly, and

Cray Dragonfly
•  Support on NIC for communication operations

without intervention of CPU

Programming Models at Exascale
•  Existing: parallel programming models are

designed for tera and peta-scale eras.
•  Good news: parallel programming models are

being equipped with new features to effectively
exploit exascale technology:
–  One-sided communication ! use communication

support from network
–  Non-blocking collectives ! more asynchronous

model, i.e. in linear solvers
–  Neighborhood collectives ! use smart scheduler for

communication on small group of processes
•  PROBLEM: How many applications at EASC2015

use new features in programming models?

Problem: Legacy Applications
•  Communication in legacy

codes was designed to allow
for features that were not
present during the initial
development of the code, i.e.
thousands of LOC for non-
blocking communication.

•  Development went so far that
there is no turning back point.
Communication code is so
complex that it is very difficult
to add new features.

•  We need disruptive changes in
codes to use new features in
programming models.

Nek5000 (our legacy applications)
•  Nek5000 is a CFD code for the

simulation of incompressible fluids.
Nek5000 is used for reactor thermal
hydraulics, astrophysics, combustion,
oceanography, vascular flow modeling.

•  It was developed in 80s and consists of
70,000 lines of code: 90% in Fortran77
(computation) and 10% in C (to handle
communication).

•  Communication implements halo
exchange with 3 different algorithm
with non-blocking MPI p2p comm
(MPI1)

•  Nek5000 communication kernel is very
complex and obfuscated ! very
difficult to use new features in
programming models

Our Disruptive Change in Nek5000
•  We designed a new

communication kernel for
Cartesian topology and
structured grids.

•  7,000 loc ! 500 loc !
Code readability

•  C, MPI C Bindings !
Fortran, MPI Fortran
Bindings ! removed
interoperability issue
between C and Fortran

•  No virtual topology !
Cartesian virtual topology
! neighborhood
collectives possible in
Nek5000 from http://b612foundation.org/just-for-fun/these-dinosaurs-had-the-right-idea/

Parallel Communication in Nek5000

•  Global reductions in the CG linear solver, i.e.
calculation of inner products of auxiliary vectors.

•  Point-to-point communication for a “halo
exchange” in the so called gather-scatter operator

•  Three old gather-scatter operator algorithms in
Nek5000:
–  Pairwise (used for our comparison and fastest one)
–  Chrystal router
–  Allreduce

Gather-Scatter Communication
Operator

•  It is for communication of spectral element
interface values:
–  values on shared (by elements on different processes)

nodes have to be consistent

Local gs_op Global gs_op

New Gather-Scatter
Communication Operator

•  Designed for Cartesian topology and uniform grids

•  Local gs_op
–  synchronization

between elements
on one process

–  synchronization of
all boundary points
except those that
are neighbors of
elements on other
processes

–  gs_op along X, Y, Z
directions

New Gather-Scatter
Communication Operator

•  Designed for Cartesian topology and uniform grids

•  Global gs_op
–  synchronization of

shared points
between elements
located on different
processes

–  gs_op along X, Y, Z
directions

MPI Implementation

•  New implementation uses Cartesian virtual
topology

•  Uses MPI blocking point-to-point
communication (next step: non-blocking
and neighborhood collectives)

•  Old one uses non-blocking point to point
collectives.

Test Environment
Beskow supercomputer at PDC, KTH:

–  Cray XC40 system, Cray Aries interconnect;
–  Cray Fortran77 and C/C++ compilers of version 5.2.40;
–  Cray MPICH2 of version 7.0.4;
–  Nekbone – skeleton version of Nek5000, with the same

communication kernel

Comparison between Old and New MPI
Communication in Nek5000/Nekbone

(weak scaling)

1 MPI process per core
polynomial order – 10
spectral elements per core - 256

The new Nekbone
implementation is
always faster than
old. On average
37% faster.
This is expected as
old Nekbone is
designed for
complex geometry.

Comparison between Old and New MPI Communication in
Nek5000/Nekbone

(weak scaling)

Performance is
higher
in each runs.
On average
13% greater then
old one.

PGAS, GASPI and GPI-2
•  Partitioned Global Address Space
– Global memory space that is accessible for all

the processes
– One-sided communication (very fast when

supported by network)
•  GPI-2
–  Implementation of the GASPI standard of a

PGAS API
– Developed by Fraunhofer Institute for

Industrial Mathematics ITWM

GPI-2 Implementation

•  Segment is a contiguous block of virtual
memory. Segments may be globally
accessible from every thread of every GPI-2
process.

•  One-sided asynchronous communication:
GPI-2 process specifies all communication
parameters, both for the local and the
remote side.

•  GPI-2 offers the possibility to use different
queues to handle communication requests.

GPI-2 Implementation

•  OpenMP directives are used in loops when
evaluating A*x for the spectral elements, also
in packing and averaging interface values,
e.g.:
!$OMP&PARALLEL&DO&PRIVATE(e,ur,us,ut,wk)&SHARED(nelt,w,u,gxyz)&&&&&&&&&&&&&&&&&&&
!$OMP&&SCHEDULE(STATIC)&&
&&&&&&do&e=1,nelt&&
&&&&&&&&&call&ax_e(&w(1,e),u(1,e),gxyz(1,1,e),ur,us,ut,wk)&
&&&&&&enddo&
!$OMP&END&PARALLEL&DO&&

•  Asynchronous communication allowed to
overlap between computation + packing
data and communication.

Comparison between New MPI and GPI-2
Communication in Nek5000/Nekbone

(weak scaling)

GPI-2 version is
always faster,
except for 512
cores.
At 8192 cores
GPI-2 is 60%
faster than MPI.
Fair comparison
would be with
non-blocking
MPI (in future).

1 GPI-2/MPI process per socket (16 cores)
polynomial order – 10
spectral elements per process - 128

Comparison between New MPI and GPI-2
Communication in Nek5000/Nekbone

(weak scaling)

At 8192 cores GPI-2 is 39% faster than MPI and 45% lower than ideal scaling,
MPI – 58% lower than ideal scaling. Could be improved by adding
more OpenMP directives to computations.

Conclusions

•  Going to exascale requires disruptive
changes.

•  New gather-scatter communication
operator has approx. 500 lines of code,
while the old one - 7000.

•  New communication kernel can be used
for co-design work as it is much easier
than the old one.

•  Communication time was decreased.

Thank you!

