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Parallelism at Exascale
•  Tianhe-2 (#1 in Top500) has 3,120,000 

cores in total, much larger number of 
processes at exascale ! billion of 
processes.

•  At exascale:
•  Interconnection networks with higher performance 

(smaller latency, larger bandwidth)
•  Emerging new network topologies, i.e. Slim Fly, and 

Cray Dragonfly
•  Support on NIC for communication operations 

without intervention of CPU



Programming Models at Exascale
•  Existing: parallel programming models are 

designed for tera and peta-scale eras.
•  Good news: parallel programming models are 

being equipped with new features to effectively 
exploit exascale technology:
–  One-sided communication ! use communication 

support from network
–  Non-blocking collectives ! more asynchronous 

model, i.e. in linear solvers
–  Neighborhood collectives ! use smart scheduler for 

communication on small group of processes
•  PROBLEM: How many applications at EASC2015 

use new features in programming models?



Problem: Legacy Applications
•  Communication in legacy 

codes was designed to allow 
for features that were not 
present during the initial 
development of the code, i.e. 
thousands of LOC for non-
blocking communication.

•  Development went so far that 
there is no turning back point. 
Communication code is so 
complex that it is very difficult 
to add new features.

•  We need disruptive changes in 
codes to use new features in 
programming models.



Nek5000 (our legacy applications)
•  Nek5000 is a CFD code for the 

simulation of incompressible fluids. 
Nek5000 is used for reactor thermal 
hydraulics, astrophysics, combustion, 
oceanography, vascular flow modeling.

•  It  was developed in 80s and consists of 
70,000 lines of code: 90% in Fortran77 
(computation) and 10% in C (to handle 
communication).

•  Communication implements halo 
exchange with 3 different algorithm 
with non-blocking MPI p2p comm 
(MPI1)

•  Nek5000 communication kernel is very 
complex and obfuscated ! very 
difficult to use new features in 
programming models



Our Disruptive Change in Nek5000
•  We designed a new 

communication kernel for 
Cartesian topology and 
structured grids.

•  7,000 loc ! 500 loc ! 
Code readability

•  C, MPI C Bindings ! 
Fortran, MPI Fortran 
Bindings ! removed 
interoperability issue 
between C and Fortran 

•  No virtual topology ! 
Cartesian virtual topology 
! neighborhood 
collectives possible in 
Nek5000 from http://b612foundation.org/just-for-fun/these-dinosaurs-had-the-right-idea/



Parallel Communication in Nek5000

•  Global reductions in the CG linear solver, i.e. 
calculation of inner products of auxiliary vectors.

•  Point-to-point communication for a “halo 
exchange” in the so called gather-scatter operator

•  Three old gather-scatter operator algorithms in 
Nek5000:
–  Pairwise (used for our comparison and fastest one)
–  Chrystal router
–  Allreduce



Gather-Scatter Communication 
Operator

•  It is for communication of spectral element 
interface values:
–  values on shared (by elements on different processes) 

nodes have to be consistent

Local gs_op Global gs_op



New Gather-Scatter 
Communication Operator

•  Designed for Cartesian topology and uniform grids

•  Local gs_op
–  synchronization 

between elements 
on one process

–  synchronization of 
all boundary points 
except those that 
are neighbors of 
elements on other 
processes

–  gs_op along X, Y, Z 
directions



New Gather-Scatter 
Communication Operator

•  Designed for Cartesian topology and uniform grids

•  Global gs_op
–  synchronization of 

shared points 
between elements 
located on different 
processes

–  gs_op along X, Y, Z 
directions



MPI Implementation

•  New implementation uses Cartesian virtual 
topology 

•  Uses MPI blocking point-to-point 
communication (next step: non-blocking 
and neighborhood collectives)

•  Old one uses non-blocking point to point 
collectives.



Test Environment
Beskow supercomputer at PDC, KTH:

–  Cray XC40 system, Cray Aries interconnect;
–  Cray Fortran77 and C/C++ compilers of version 5.2.40;
–  Cray MPICH2 of version 7.0.4;
–  Nekbone – skeleton version of Nek5000, with the same 

communication kernel



Comparison between Old and New MPI 
Communication in Nek5000/Nekbone  

(weak scaling)

1 MPI process per core 
polynomial order – 10 
# spectral elements per core - 256 

The new Nekbone 
implementation is 
always faster than 
old. On average 
37% faster. 
This is expected as 
old Nekbone is 
designed for 
complex geometry. 



Comparison between Old and New MPI Communication in 
Nek5000/Nekbone  

(weak scaling)

Performance is 
higher
in each runs. 
On average 
13% greater then 
old one.



PGAS, GASPI and GPI-2
•  Partitioned Global Address Space
– Global memory space that is accessible for all 

the processes
– One-sided communication (very fast when 

supported by network)
•  GPI-2
–  Implementation of the GASPI standard of a 

PGAS API
– Developed by Fraunhofer Institute for 

Industrial Mathematics ITWM



GPI-2 Implementation

•  Segment is a contiguous block of virtual 
memory. Segments may be globally 
accessible from every thread of every GPI-2 
process.

•  One-sided asynchronous communication: 
GPI-2 process specifies all communication 
parameters, both for the local and the 
remote side.

•  GPI-2 offers the possibility to use different 
queues to handle communication requests.



GPI-2 Implementation

•  OpenMP directives are used in loops when 
evaluating A*x for the spectral elements, also 
in packing and averaging interface values, 
e.g.:
!$OMP&PARALLEL&DO&PRIVATE(e,ur,us,ut,wk)&SHARED(nelt,w,u,gxyz)&&&&&&&&&&&&&&&&&&&
!$OMP&&SCHEDULE(STATIC)&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&do&e=1,nelt&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&call&ax_e(&w(1,e),u(1,e),gxyz(1,1,e),ur,us,ut,wk)&
&&&&&&enddo&
!$OMP&END&PARALLEL&DO&&

•  Asynchronous communication allowed to 
overlap between computation + packing 
data and communication.



Comparison between New MPI and GPI-2 
Communication in Nek5000/Nekbone  

(weak scaling) 

GPI-2 version is 
always faster, 
except for 512 
cores. 
At 8192 cores 
GPI-2 is 60% 
faster than MPI. 
Fair comparison 
would be with 
non-blocking 
MPI (in future). 

1 GPI-2/MPI process per socket (16 cores) 
polynomial order – 10 
# spectral elements per process - 128 



Comparison between New MPI and GPI-2 
Communication in Nek5000/Nekbone  

(weak scaling) 

At 8192 cores GPI-2 is 39% faster than MPI and 45% lower than ideal scaling,
MPI – 58% lower than ideal scaling. Could be improved by adding 
more OpenMP directives to computations.



Conclusions

•  Going to exascale requires disruptive 
changes.

•  New gather-scatter communication 
operator has approx. 500 lines of code, 
while the old one - 7000.

•  New communication kernel can be used 
for co-design work as it is much easier 
than the old one.

•  Communication time was decreased.



Thank you!


