PERFORMANCE OF PARALLEL
IO ON LUSTRE AND GPFS

David Henty and Adrian Jackson
(EPCC, The University of Edinburgh)
Charles Moulinec and Vendel Szeremi
(STFC, Daresbury Laboratory

anlve %
<, S '
e CC 1 2
~ = -
o\idrS T
Y i O QP
£
OrNBY

L
Outline

- Parallel 10 problem

- Common |O patterns

- Parallel filesystems

- MPI-IO Benchmark results
- Filesystem tuning

- MPI-10 Application results
- HDF5 and NetCDF

- Conclusions

epCccC

Parallel 1O problen

Process 2

o [alels e

Process 3

"

12| 3| 4

Progess 1

L
Parallel Filesystems

(Figure based on Lustre diagram from Cray)

=) ==

Single logical user file OS/file-system
automatically divides

the file into stripes

L
Common |0 patterns

- Multiple files, multiple writers
- each process writes its own file
- numerous usability and performance issues

- Single file, single writer (master 10)
- high usability but poor performance

- Single file, multiple writers
- all processes write to a single file; poor performance

- Single file, collective writers
- aggregate data onto a subset of IO processes
- hard to program and may require tuning
- potential for scalable 10 performance

Global description: MPI-IO

rank 1 rank 3
0,1) (1,1)

rank O rank 2
(0,0) (1,0)

global file 1123|456 |7|8|9 10111213 |14 |15 |16

rank 1 filetype

rank 1 view of file _

epcc

L
Collective IO

- Enables numerous optimisations in principle
- requires global description and participation of all processes
- does this help in practice?

N B B

Combine ranks 0 and 1 for single Combine ranks 2 and 3 for single
contiguous read/write to file contiguous read/write to file

— = — =

.
epCccC

L
Cellular Automaton Model

40,960 grains, min=0.002, max=4.0

€ | -
4 m
=
3
3 -
|
P ”
1

(a) (b)

Figure 1: A 4.1 x 10° cell, 40,960 grain equiaxed microstructure model, showing (a) grain
arrangement with colour denoting orientation; (b) grain size size (volume) histogram.

- Fortran coarray library for 3D cellular automata microstructure
simulation, Anton Shterenlikht, proceedings of 7" International
Conference on PGAS Programming Models, 3-4 October 2013,

Edinburgh, UK.
EepCCl |

800

600

400

200

MI T —

D
Benchmark

- Distributed regular 3D dataset across 3D process grid
- local data has halos of depth 1; set up for weak scaling
- implemented in Fortran and MPI-IO

! Define datatype describing global location of local data
call MPI Type create subarray(ndim, arraygsize, arraysubsize, arraystart,
MPI ORDER FORTRAN, MPI DOUBLE PRECISION, filetype, ilerr)

! Define datatype describing where local data sits in local array
call MPI_Type create_ subarray(ndim, arraysize, arraysubsize, arraystart,
MPI ORDER FORTRAN, MPI DOUBLE PRECISION, mpi_subarray, ierr)

! After opening file fh, define what portions of file this process owns

call MPI_File set view(fh, disp, MPI DOUBLE PRECISION, filetype,
'native', MPI INFO NULL, ierr)

! Write data collectively

call MPI File write_all (fh, iodata, 1, mpi_subarray, status, ierr)

epcc|

ARCHER XC30

CRANY

THE SUPERCOMPUTER COMPANY

EPSRC

Engineering and Physical Sciences
Research Council

NERC

wNilVe
N
N
a) e A
= 4 -
A PRI K
o = s
M
Fa <
I).u N \7,\\-

L
Single file, multiple writers

- Serial bandwidth on ARCHER around 400 to 500 MiB/s

-Use MPI File writenotMPI File write all

- identical functionality
- different performance

1 49.5 MiB/s
8 5.9 MiB/s
64 2.4 MiB/s

epCccC

L
Single file, collective writers

16

Collective MPI-10 ———
Master |0 ——v0o
14 |

12 +

10 r

GiB/s
o0

1 4 16 64 256 1024 4096

epCccC

Frocesses

L
Lustre striping

- We've done a lot of work to enable (many) collective writers
- learned MPI-10 and described data layout to MPI
- enabled collective IO
- MPI dynamically decided on number of writers
- collected data and aggregates before writing

- ... for almost no benefit!

- Need many physical disks as well as many IO streams

- In Lustre, controlled by the number of stripes
- default number of stripes is 4, ARCHER has around 50 IO servers

- User needs to set striping count on a per-file/directory basis
- 1fs setstripe -c -1 <directory> # use maximal striping

epCccC

< :
A%
e

c

o

L
Cray XC30 with Lustre: 1283 per proc

15 T T T T T T T T T T T T
Striped parallel ——
Defstriped parallel —s«—
14 + Unstriped parallel —— .
Striped serial —s—
17 Defstriped serial —=—
- Unstriped serial —s— 1
10 + .
(73]
o 8 1
0
B i
4 L i
2t i
D 1 N 1 L 1 N 1 N 1 —_ 1 ._=$
1 4 16 B4 2be 1024 4096
Frocesses

epCccC

L
Cray XC30 with Lustre: 2563 per proc

16 T T T T T T T T T T T T
Striped parallel ——
Defstriped parallel —s«—
14 + Unstriped parallel —s«— .
Striped serial —e—
12 Defstriped serial —=—
- Unstriped serial —s— 1
10 | .
"))
o 8 1
0
B i
4 | i
2+ i
2
U 1 . 1 . 1 . 1 . 1 s 1 . *
1 4 16 B4 2b6 1024 4096

Frocesses

epCccC

BG/Q: #10 servers scales with CPUs

MIB/s

700

600

500

400

300

200

100

Large blocks
Default settings
Serial 10

'
+
+

2048

4096

8192

Frocesses

16384

32768

epCccC

Code_Saturne http://code-saturne.org

- CFD code developed by EDF (France)

- Co-located finite volume, arbitrary unstructured meshes,
predictor-corrector

- 350 000 lines of code
- 50% C
- 37% Fortran
- 13% Python

- MPI for distributed-memory (some OpenMP for shared-
memory) including MPI-10

- Laminar and turbulent flows: k-eps, k-omega, SST, v2f,

RSM, LES models, ... |epCC

L
Code_ SATURNE: default settings

1200

1000

200

MPI-IO - 7.2 B Tetra Mesh

——8—— XC30 Read Input 814MB
——— XC30 Write Mesh_Output 742GB
----- 4----- BGQ Read Input 814MB
----- € ----- BGQ Write Mesh_Output 742GB

L)
-
e
bl
-
"
-
"

-
T
S
-
M
-
T
T
-

.. T
30000 40000 50000 60000

Number of Cores

- Consistent with
benchmark results

- default striping Lustre
similar to GPFS

epCccC

< —
< o
=
C
o

L
Code_Saturne: Lustre striping

MPI-IO - 7.2 B Tetra Mesh

1200
- Consistent with

1000 benchmark results

- order of magnitude

800 |-
| Improvement from
m — - -
VE00 | —m—— No Stripping Read Input 814MB striping
§ - ———— No Stripping Write Mesh_Output 742GB
= T e Q- Full Stripping Read Input 814MB
400 RS Q- Full Stripping Write Mesh_Output 742GB
200 |~

. . lepccC

Number of Cores

L
Simple HDF5 benchmark: Lustre

4 ;
MFI striped —+—
HOFS striped ——«—
35 MPI default —s— -
HDFS default —e—
3
25
"))
i 2
0
15 r
1
05
[—— ———
D 1 1 1 1
128 2b6 512 1024 2048 4096
Frocesses

epCccC

D
TPLS code

- Two-Phase Level Set: CFD code

- simulates the interface between two fluid phases.
- High resolution direct numerical simulation

- Applications
- Evaporative cooling
- Oll and gas hydrate transport
- Cleaning processes
- Distillation/absorption

- Fortran90 + MPI

- 10 improved by orders of magnitude
- ASCII master 10 -> binary NetCF
- does striping help?

D
TPLS results

2DD T T T T T T T R T
1 stnpe ——
4 Stripes ——«—
8 Stripes ——
Max Stripes
150 | .
Ln
o 100 ¢ .
=
50 .
D 1 1 1 1 1 1 1 1

16 32 64 128 256 512 1024 2048 4096 8192

epCccC

Frocesses

D
Further Work

- Non-blocking parallel 10 could hide much of writing time
- or use more restricted split-collective functions
- extend benchmark to overlap comms with calculation

- | don't believe it is implemented in current MPI-IO libraries
- blocking MPI collectives are used internally

- A subset of user MPI processes will be used by MPI-10

- would be nice to exclude them from calculation

- extend MPI_Comm_split type () to include something like
MPI _COMM TYPE IONODE as well as MPI_COMM TYPE SHARED ?

epCccC

Conclusions

- Efficient parallel 10 requires all of the following
- a global approach
- coordination of multiple 10 streams to the same file
- collective writers
- filesystem tuning

- MPI-10 Benchmark useful to inform real applications
- NetCDF and HDF5 layered on top of MPI-10
- although real application IO behaviour is complicated

- Try a library before implementing bespoke solutions!

- higher level view pays dividends | epcc

