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Parallel Filesystems

(Figure based on Lustre diagram from Cray)
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Single logical user file OS/file-system
automatically divides

the file into stripes
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Common |0 patterns

- Multiple files, multiple writers
- each process writes its own file
- numerous usability and performance issues

- Single file, single writer (master 10)
- high usability but poor performance

- Single file, multiple writers
- all processes write to a single file; poor performance

- Single file, collective writers
- aggregate data onto a subset of IO processes
- hard to program and may require tuning
- potential for scalable 10 performance




Global description: MPI-IO

rank 1 rank 3
0,1) (1,1)

rank O rank 2
(0,0) (1,0)

global file 1123|456 |7|8|9 10111213 |14 |15 |16

rank 1 filetype

rank 1 view of file _
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Collective IO

- Enables numerous optimisations in principle
- requires global description and participation of all processes
- does this help in practice?

N B B

Combine ranks 0 and 1 for single Combine ranks 2 and 3 for single
contiguous read/write to file contiguous read/write to file
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Cellular Automaton Model

40,960 grains, min=0.002, max=4.0
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Figure 1: A 4.1 x 10° cell, 40,960 grain equiaxed microstructure model, showing (a) grain
arrangement with colour denoting orientation; (b) grain size size (volume) histogram.

- Fortran coarray library for 3D cellular automata microstructure
simulation, Anton Shterenlikht, proceedings of 7" International
Conference on PGAS Programming Models, 3-4 October 2013,

Edinburgh, UK.
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D
Benchmark

- Distributed regular 3D dataset across 3D process grid
- local data has halos of depth 1; set up for weak scaling
- implemented in Fortran and MPI-IO

! Define datatype describing global location of local data
call MPI Type create subarray(ndim, arraygsize, arraysubsize, arraystart,
MPI ORDER FORTRAN, MPI DOUBLE PRECISION, filetype, ilerr)

! Define datatype describing where local data sits in local array
call MPI_Type create_ subarray(ndim, arraysize, arraysubsize, arraystart,
MPI ORDER FORTRAN, MPI DOUBLE PRECISION, mpi_subarray, ierr)

! After opening file fh, define what portions of file this process owns

call MPI_File set view(fh, disp, MPI DOUBLE PRECISION, filetype,
'native', MPI INFO NULL, ierr)

! Write data collectively

call MPI File write_all (fh, iodata, 1, mpi_subarray, status, ierr)
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Single file, multiple writers

- Serial bandwidth on ARCHER around 400 to 500 MiB/s

-Use MPI File writenotMPI File write all

- identical functionality
- different performance

1 49.5 MiB/s
8 5.9 MiB/s
64 2.4 MiB/s
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Single file, collective writers
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Lustre striping

- We've done a lot of work to enable (many) collective writers
- learned MPI-10 and described data layout to MPI
- enabled collective IO
- MPI dynamically decided on number of writers
- collected data and aggregates before writing

- ... for almost no benefit!

- Need many physical disks as well as many IO streams

- In Lustre, controlled by the number of stripes
- default number of stripes is 4, ARCHER has around 50 IO servers

- User needs to set striping count on a per-file/directory basis
- 1fs setstripe -c -1 <directory> # use maximal striping
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Cray XC30 with Lustre: 1283 per proc
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Cray XC30 with Lustre: 2563 per proc
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BG/Q: #10 servers scales with CPUs
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Code_Saturne http://code-saturne.org

- CFD code developed by EDF (France)

- Co-located finite volume, arbitrary unstructured meshes,
predictor-corrector

- 350 000 lines of code
- 50% C
- 37% Fortran
- 13% Python

- MPI for distributed-memory (some OpenMP for shared-
memory) including MPI-10

- Laminar and turbulent flows: k-eps, k-omega, SST, v2f,

RSM, LES models, ... |epCC
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Code_ SATURNE: default settings
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- Consistent with
benchmark results

- default striping Lustre
similar to GPFS
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Code_Saturne: Lustre striping

MPI-IO - 7.2 B Tetra Mesh
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Simple HDF5 benchmark: Lustre
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TPLS code

- Two-Phase Level Set: CFD code

- simulates the interface between two fluid phases.
- High resolution direct numerical simulation

- Applications
- Evaporative cooling
- Oll and gas hydrate transport
- Cleaning processes
- Distillation/absorption

- Fortran90 + MPI

- 10 improved by orders of magnitude
- ASCII master 10 -> binary NetCF
- does striping help?
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TPLS results

2DD T T T T T T T R T
1 stnpe ——
4 Stripes ——«—
8 Stripes ——
Max Stripes
150 | .
Ln
o 100 ¢ .
=
50 .
D 1 1 1 1 1 1 1 1

16 32 64 128 256 512 1024 2048 4096 8192

epCccC

Frocesses




D
Further Work

- Non-blocking parallel 10 could hide much of writing time
- or use more restricted split-collective functions
- extend benchmark to overlap comms with calculation

- | don't believe it is implemented in current MPI-IO libraries
- blocking MPI collectives are used internally

- A subset of user MPI processes will be used by MPI-10

- would be nice to exclude them from calculation

- extend MPI_Comm_split type () to include something like
MPI _COMM TYPE IONODE as well as MPI_COMM TYPE SHARED ?
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Conclusions

- Efficient parallel 10 requires all of the following
- a global approach
- coordination of multiple 10 streams to the same file
- collective writers
- filesystem tuning

- MPI-10 Benchmark useful to inform real applications
- NetCDF and HDF5 layered on top of MPI-10
- although real application IO behaviour is complicated

- Try a library before implementing bespoke solutions!

- higher level view pays dividends | epcc




