
PERFORMANCE OF PARALLEL

IO ON LUSTRE AND GPFS

David Henty and Adrian Jackson

(EPCC, The University of Edinburgh)

Charles Moulinec and Vendel Szeremi

(STFC, Daresbury Laboratory

Outline

• Parallel IO problem

• Common IO patterns

• Parallel filesystems

• MPI-IO Benchmark results

• Filesystem tuning

• MPI-IO Application results

• HDF5 and NetCDF

• Conclusions

Parallel IO problem
1 2 3 4

1 2 3 4

1 2 3

1 2 3 4

Process 4
Process 2

Process 1

Process 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

4

Parallel Filesystems

Single logical user file OS/file-system

automatically divides

the file into stripes

(Figure based on Lustre diagram from Cray)

Common IO patterns
• Multiple files, multiple writers

• each process writes its own file

• numerous usability and performance issues

• Single file, single writer (master IO)

• high usability but poor performance

• Single file, multiple writers

• all processes write to a single file; poor performance

• Single file, collective writers

• aggregate data onto a subset of IO processes

• hard to program and may require tuning

• potential for scalable IO performance

Global description: MPI-IO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

rank 0

(0,0)

rank 1

(0,1)

rank 3

(1,1)

rank 2

(1,0)

rank 1 filetype

rank 1 view of file 3 4 7 8

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 5 global file

Collective IO

• Enables numerous optimisations in principle

• requires global description and participation of all processes

• does this help in practice?

Combine ranks 0 and 1 for single

contiguous read/write to file

Combine ranks 2 and 3 for single

contiguous read/write to file

Cellular Automaton Model

• Fortran coarray library for 3D cellular automata microstructure

simulation, Anton Shterenlikht, proceedings of 7th International

Conference on PGAS Programming Models, 3-4 October 2013,

Edinburgh, UK.

Benchmark
• Distributed regular 3D dataset across 3D process grid

• local data has halos of depth 1; set up for weak scaling

• implemented in Fortran and MPI-IO

! Define datatype describing global location of local data

call MPI_Type_create_subarray(ndim, arraygsize, arraysubsize, arraystart,

 MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, filetype, ierr)

! Define datatype describing where local data sits in local array

call MPI_Type_create_subarray(ndim, arraysize, arraysubsize, arraystart,

 MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, mpi_subarray, ierr)

! After opening file fh, define what portions of file this process owns

call MPI_File_set_view(fh, disp, MPI_DOUBLE_PRECISION, filetype,

 'native', MPI_INFO_NULL, ierr)

! Write data collectively

call MPI_File_write_all(fh, iodata, 1, mpi_subarray, status, ierr)

ARCHER XC30

Single file, multiple writers

• Serial bandwidth on ARCHER around 400 to 500 MiB/s

• Use MPI_File_write not MPI_File_write_all

• identical functionality

• different performance

 Processes Bandwidth

1 49.5 MiB/s

8 5.9 MiB/s

64 2.4 MiB/s

Single file, collective writers

Lustre striping

• We’ve done a lot of work to enable (many) collective writers

• learned MPI-IO and described data layout to MPI

• enabled collective IO

• MPI dynamically decided on number of writers

• collected data and aggregates before writing

• ... for almost no benefit!

• Need many physical disks as well as many IO streams

• in Lustre, controlled by the number of stripes

• default number of stripes is 4; ARCHER has around 50 IO servers

• User needs to set striping count on a per-file/directory basis

• lfs setstripe –c -1 <directory> # use maximal striping

Cray XC30 with Lustre: 1283 per proc

Cray XC30 with Lustre: 2563 per proc

BG/Q: #IO servers scales with CPUs

Code_Saturne http://code-saturne.org

• CFD code developed by EDF (France)

• Co-located finite volume, arbitrary unstructured meshes,

predictor-corrector

• 350 000 lines of code

• 50% C

• 37% Fortran

• 13% Python

• MPI for distributed-memory (some OpenMP for shared-

memory) including MPI-IO

• Laminar and turbulent flows: k-eps, k-omega, SST, v2f,

RSM, LES models, ...

Code_SATURNE: default settings

• Consistent with

benchmark results

• default striping Lustre

similar to GPFS

Code_Saturne: Lustre striping

Number of Cores

T
im

e
 (

s
)

30000 40000
0

200

400

600

800

1000

1200

No Stripping Read Input 814MB

No Stripping Write Mesh_Output 742GB

Full Stripping Read Input 814MB

Full Stripping Write Mesh_Output 742GB

MPI-IO - 7.2 B Tetra Mesh

• Consistent with

benchmark results

• order of magnitude

improvement from

striping

Simple HDF5 benchmark: Lustre

TPLS code

• Two-Phase Level Set: CFD code

• simulates the interface between two fluid phases.

• High resolution direct numerical simulation

• Applications

• Evaporative cooling

• Oil and gas hydrate transport

• Cleaning processes

• Distillation/absorption

• Fortran90 + MPI

• IO improved by orders of magnitude

• ASCII master IO -> binary NetCF

• does striping help?

TPLS results

Further Work

• Non-blocking parallel IO could hide much of writing time

• or use more restricted split-collective functions

• extend benchmark to overlap comms with calculation

• I don’t believe it is implemented in current MPI-IO libraries

• blocking MPI collectives are used internally

• A subset of user MPI processes will be used by MPI-IO

• would be nice to exclude them from calculation

• extend MPI_Comm_split_type() to include something like

MPI_COMM_TYPE_IONODE as well as MPI_COMM_TYPE_SHARED ?

Conclusions

• Efficient parallel IO requires all of the following

• a global approach

• coordination of multiple IO streams to the same file

• collective writers

• filesystem tuning

• MPI-IO Benchmark useful to inform real applications

• NetCDF and HDF5 layered on top of MPI-IO

• although real application IO behaviour is complicated

• Try a library before implementing bespoke solutions!

• higher level view pays dividends

