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Parallel IO problem 
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Parallel Filesystems 

Single logical user file OS/file-system 

automatically divides 

the file into stripes 

(Figure based on Lustre diagram from Cray) 



Common IO patterns 
• Multiple files, multiple writers 

• each process writes its own file 

• numerous usability and performance issues 
 

• Single file, single writer (master IO) 

• high usability but poor performance 
 

• Single file, multiple writers 

• all processes write to a single file; poor performance 
 

• Single file, collective writers 

• aggregate data onto a subset of IO processes 

• hard to program and may require tuning 

• potential for scalable IO performance 

 



Global description: MPI-IO 
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Collective IO 

• Enables numerous optimisations in principle 

• requires global description and participation of all processes 

• does this help in practice? 

Combine ranks 0 and 1 for single 

contiguous read/write to file 

Combine ranks 2 and 3 for single 

contiguous read/write to file 



Cellular Automaton Model 

 

 

 

 

 

 

 

 

• Fortran coarray library for 3D cellular automata microstructure 

simulation, Anton Shterenlikht, proceedings of 7th International 

Conference on PGAS Programming Models, 3-4 October 2013, 

Edinburgh, UK. 



Benchmark 
• Distributed regular 3D dataset across 3D process grid 

• local data has halos of depth 1; set up for weak scaling 

• implemented in Fortran and MPI-IO 
 

! Define datatype describing global location of local data 

call MPI_Type_create_subarray(ndim, arraygsize, arraysubsize, arraystart, 

       MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, filetype, ierr) 

 

! Define datatype describing where local data sits in local array 

call MPI_Type_create_subarray(ndim, arraysize, arraysubsize, arraystart, 

       MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, mpi_subarray, ierr) 

 

! After opening file fh, define what portions of file this process owns 

call MPI_File_set_view(fh, disp, MPI_DOUBLE_PRECISION, filetype, 

                       'native', MPI_INFO_NULL, ierr) 

! Write data collectively 

call MPI_File_write_all(fh, iodata, 1, mpi_subarray, status, ierr) 



ARCHER XC30 



Single file, multiple writers 

• Serial bandwidth on ARCHER around 400 to 500 MiB/s 
 

• Use MPI_File_write not MPI_File_write_all 

• identical functionality 

• different performance 

 

 Processes Bandwidth 

1 49.5 MiB/s 

8 5.9 MiB/s 

64 2.4 MiB/s 



Single file, collective writers 



Lustre striping 

• We’ve done a lot of work to enable (many) collective writers 

• learned MPI-IO and described data layout to MPI 

• enabled collective IO 

• MPI dynamically decided on number of writers 

• collected data and aggregates before writing 

• ... for almost no benefit! 

• Need many physical disks as well as many IO streams 

• in Lustre, controlled by the number of stripes 

• default number of stripes is 4; ARCHER has around 50 IO servers 

• User needs to set striping count on a per-file/directory basis 

• lfs setstripe –c -1 <directory> # use maximal striping 



Cray XC30 with Lustre: 1283 per proc 



Cray XC30 with Lustre: 2563 per proc 



BG/Q: #IO servers scales with CPUs 



Code_Saturne http://code-saturne.org 

• CFD code developed by EDF (France) 

• Co-located finite volume, arbitrary unstructured meshes, 

predictor-corrector 

• 350 000 lines of code 

• 50% C 

• 37% Fortran 

• 13% Python 

 

• MPI for distributed-memory (some OpenMP for shared-

memory) including MPI-IO 

• Laminar and turbulent flows: k-eps, k-omega, SST, v2f, 

RSM, LES models, ... 

 



Code_SATURNE: default settings 

• Consistent with 

benchmark results 

• default striping Lustre 

similar to GPFS 



Code_Saturne: Lustre striping 
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• Consistent with 

benchmark results 

• order of magnitude 

improvement from 

striping 



Simple HDF5 benchmark: Lustre 



TPLS code 

• Two-Phase Level Set: CFD code 

• simulates the interface between two fluid phases. 

• High resolution direct numerical simulation 

• Applications 

• Evaporative cooling 

• Oil and gas hydrate transport 

• Cleaning processes 

• Distillation/absorption 

• Fortran90 + MPI 

• IO improved by orders of magnitude 

• ASCII master IO -> binary NetCF 

• does striping help? 

 



TPLS results 



Further Work 

• Non-blocking parallel IO could hide much of writing time 

• or use more restricted split-collective functions 

• extend benchmark to overlap comms with calculation 

 

• I don’t believe it is implemented in current MPI-IO libraries 

• blocking MPI collectives are used internally 

 

• A subset of user MPI processes will be used by MPI-IO 

• would be nice to exclude them from calculation 

• extend MPI_Comm_split_type() to include something like 

MPI_COMM_TYPE_IONODE as well as MPI_COMM_TYPE_SHARED ?  



Conclusions 

• Efficient parallel IO requires all of the following 

• a global approach 

• coordination of multiple IO streams to the same file 

• collective writers 

• filesystem tuning 

 

• MPI-IO Benchmark useful to inform real applications 

• NetCDF and HDF5 layered on top of MPI-IO 

• although real application IO behaviour is complicated 

 

• Try a library before implementing bespoke solutions! 

• higher level view pays dividends 


