Anisotropic Mesh Adaptation for the Manycore Era

Georgios Rokos

Imperial College London

April 23, 2015
Introduction

- Irregular applications:
 - Use of unstructured or completely irregular data
 - Mostly represented as graphs

- Challenges:
 - Unpredictable memory access patterns
 - Poor data locality
 - Kernels end up being memory-bound rather than compute-bound
 - Data-driven algorithms, hard to extract parallelism
 - Fine-grained parallelism leads to frequent thread synchronisation

- Mutable dependencies:
 - E.g. *morph algorithms* (Pingali et al.)
 - Graph topology is mutated in non-trivial ways
 - Any preprocessing is constantly invalidated
Need to study a real-world problem in order to develop techniques for parallelising irregular kernels

Unstructured meshes and finite element/volume modelling:
- Spatial domain discretised into triangles (in this talk we only focus on 2D)
- Ideal for representing complex geometries (e.g. coastal modelling)
- Numerical solutions of partial differential equations (PDEs)

Mesh adaptivity methods:
- Allow dynamic control of solution error
- Keep the resolution in the goldilocks zone - not too high and not too low
- Minimise computational cost for a specific model accuracy
Example
Example: Detail along the wave front

- Elements are stretched along the direction of the front
Error control

► Initial mesh generated *a priori*:
 • Difficult to generate a mesh that is both efficient and resolves the solution where required
 • Particularly difficult for multi-scale problems

► Local error estimates
 • Error estimate transformed to a metric tensor field (MTF)
 • Discretised vertex-wise
 • Tensor at some vertex specifies local size and shape of an element containing that vertex which is required to achieve a specific error tolerance

► Support for anisotropic problems
 • PDE exhibits directional dependencies (desired element size and shape) encoded in a MTF
 • E.g. higher resolution is required perpendicular to a shock front (where flow is more complex) than along the shock
A metric tensor is a symmetric matrix, 2x2 in 2D, 3x3 in 3D. It defines the length of vectors and allows us to calculate inner products in generalised spaces, in the same way the dot product defines distance in Euclidean space. An example in 2D with vertices $V_1(x_1, y_1), V_2(x_2, y_2)$ and edge $E = (x_0, y_0) = (x_2 - x_1, y_2 - y_1)$.

- Length in Euclidean space given by the dot product:

$$L_{\text{Euclidean}} = \| E \| = \sqrt{E \cdot E} = \sqrt{x_0^2 + y_0^2}$$

- Edge length with respect to a metric tensor $M = \begin{bmatrix} A & B \\ B & C \end{bmatrix}$:

$$L_M = \| E \|_M = \sqrt{E^T ME} = \sqrt{[x_0 \, y_0] \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}} = \sqrt{x_0^2 A + 2x_0 y_0 B + y_0^2 C}$$
Element size and shape

- Metric tensor in the middle of a triangle
 - Linear interpolation of metric tensors at the three vertices
- Eigenvalue decomposition of a 2D metric tensor:

\[
M = Q \Lambda Q^T = \begin{bmatrix}
Q_{00} & Q_{01} \\
Q_{10} & Q_{11}
\end{bmatrix}
\begin{bmatrix}
\lambda_0 \\
\lambda_1
\end{bmatrix}
\begin{bmatrix}
Q_{00} & Q_{10} \\
Q_{01} & Q_{11}
\end{bmatrix}
\]

- Each eigenvalue \(\lambda_i \) encodes the required element size in the direction of the corresponding eigenvector \(Q_i \)
Adaptive algorithms

- 4 adaptive algorithms
 - Coarsening
 - Refinement
 - Swapping
 - Smoothing

- Mesh adaptation
 - Element quality functional measures 'distance' from ideal element as defined by metric field
 - Iterative application of local mesh operations until the quality is within some threshold
 - h-adaptivity: morph algorithms

h-adaptivity \rightarrow mesh topology is modified

r-adaptivity \rightarrow mesh topology is not modified
Coarsening

- Done via edge collapse: vertex V_B collapses onto V_A, removing the dashed edge and the adjacent elements from the mesh (Li et al. 2005)
- Every vertex is examined to determine onto which neighbour (if any) it can collapse
- If a vertex is removed the local neighbourhood is modified, so all neighbours are marked for re-examination

\implies Propagation of coarsening
Refinement

- Edge and element refinement: long edges are split, leading to 1:2 (bisection), 1:3 or 1:4 (regular refinement) division of elements, which increases local mesh resolution (Li et al. 2005)
- At first, all edges are visited and long edges are split
- Next up, elements with a split edge are split according to the number of split edges
- No need for propagation, just execute refinement kernel again
Swapping

- Edge swapping: edges shared between two elements can be flipped if the minimum quality of the element pair is raised (Li et al. 2005)
- Improves mesh quality without increasing the number of elements
- Once an edge has been flipped, all adjacent edges are marked for re-examination

→ Propagation of swapping
Smoothing

- Implemented as optimisation-based vertex smoothing: a vertex u_i is relocated to a new position so that the quality of the worst element among $\{e_{i,0}...e_{i,5}\}$ is maximised (Freitag et al. 1995)
- Linear search problem in the direction of the steepest ascent of the derivative of the quality functional
- Smoothing is propagated
Topological hazards

Example:

- One thread coarsens edge $V_B V_C$, V_B collapses onto V_C
- Another thread coarsens edge $V_C V_D$, V_C collapses onto V_D

$\implies V_B$ collapses onto a vertex (V_C) which is being deleted!
Topological hazards: Mesh colouring

Solution: Mesh colouring

- Nodes are processed in batches of independent sets
 - Guarantees that adjacent nodes cannot collapse at the same time
- colouring is in the loop
 - Need it to be fast and use as few colours as possible
- colouring algorithm by Çatalyürek et al.
 - Based on optimistic/speculative execution
 - We developed an improved version (more on that offline)
Race conditions

Example: updating adjacency lists

- One thread coarsens edge $V_B V_C$, V_B collapses onto V_C
 - adjacency lists of V_C are modified
 - e.g. V_A must be added to the node-node list of V_C

- Another thread coarsens edge $V_D V_C$, V_D collapses onto V_C
 - adjacency lists of V_C are modified
 - e.g. V_E must be added to the node-node list of V_C

\Rightarrow Both threads try to modify the node-node list of V_C
Race conditions: Deferred updates

Solution: Defer updates until the independent set has been processed

- Allocate lists $L_{[i][j]}$ of deferred updates, $i, j = 0..nthreads - 1$

- A thread T_i stores updates pertaining to vertex V_A in $L_{[T_i][j]}$, $j = \text{hash}(V_A) \% nthreads$

- At the end, every thread T_j commits all updates in $L_{[i][T_j]}$, $i=0..N-1$

- Advantage: Every thread visits only those updates it is responsible for committing \implies FAST!
Worklists

Worklist: A set of workitems which will be processed, e.g. a global worklist of nodes in an independent set

- Threads colour the mesh in parallel
 - Every thread stores the nodes it has coloured in local (private) arrays, \(\text{local}[T_i][\text{colour}] \), \(\text{colour}=0..\text{ncolours} \)
 - For each colour \(C \), we need to concatenate all private arrays \(\text{local}[T_i][C], \ i=0..N-1 \) into a global array \(\text{global}[C] \)

- Classic approach: Prefix sum (or “scan” in MPI terminology) on the index in \(\text{global}[C] \) for every thread
 - Threads need to synchronise \(\implies \) SLOW!

- Alternative: Atomic fetch-and-add
 - Introduced in OpenMP 3.1
 - “atomic capture” directive
 - Older compilers support it either via intrinsics or inline assembly
Worklists: Example

```cpp
// Pre-allocate enough space
std::vector<Item> globalWorklist(some_appropriate_size);
int worklistSize = 0;

#pragma omp parallel
{
    // Initialise a private list
    std::vector<Item> private_list;

    #pragma omp for nowait
    for (all items which need to be processed)
    {
        do_some_work();
        private_list.push_back(item);
    }

    // Private variable — the index in global worklist
    int idx;

    #pragma omp atomic capture
    {
        idx = worklistSize;
        worklistSize += private_list.size();
    }

    memcpy(&globalWorklist[idx], &private_list[0], private_list.size() * sizeof(Item));
}
```

▶ Note the “nowait” clause at omp-for
 • Threads need not synchronise at the end of the loop ➞ FAST!
Loop scheduling: OMP

- Highly diverse loops.
- Example: Mesh refinement
 - Element-refinement loop traverses all elements
 - An element can be processed in 4 different ways: no split, 1:2, 1:3, 1:4
 \[\Rightarrow \] Load imbalance!
- OMP dynamic scheduling
 - Perfect load balance
 - Way too much overhead (millions of nodes/elements)
 \[\Rightarrow \] Poor performance
- OMP guided scheduling
 - Decent load balance, but it could be better
 - Almost no overhead
 \[\Rightarrow \] Much better performance
Loop scheduling: Work-stealing

- Work-stealing scheduler
 - Very good load balance
 - Relatively little overhead
 \[\implies \] Work-stealing is the way to go!

- OMP does not support work-stealing:
 - We had to implement it manually

- Hand-written scheduler implements an improved version of the classic work-stealing algorithm:
 - Excellent load balance
 - Very little overhead
 \[\implies \] Best performance

- Work on this scheduler is still in progress:
 - Preliminary results from synthetic benchmarks: outperforms Intel® Cilk™ Plus work-stealing
Parallel anisotropic Adaptive Mesh Toolkit:
- 2D/3D mesh adaptivity framework
- Open source, under the BSD license
- Available on Github
 https://github.com/meshadaptation/pragmatic

- Implements all aforementioned adaptive algorithms
- Hybrid OpenMP/MPI support
- Currently being integrated with Dolfin (FEniCS) and DMPlEx (PETSc)
A synthetic solution ψ is defined to vary in time and space for some value of the period T:

$$\psi(x, y, t) = 0.1 \sin \left(50x + \frac{2\pi t}{T} \right) + \arctan \left(-\frac{0.1}{2x - \sin \left(5y + \frac{2\pi t}{T} \right)} \right)$$

Benchmark solution field for some time step t_i:
Sample benchmark: Initial mesh

Initial, auto-generated mesh
Sample benchmark: Adapted mesh snapshot

Adapted mesh for time step t_i
Sample benchmark: Mesh quality snapshot

Quality of adapted mesh for time step t_i
Sample benchmark: Mesh quality detail

Detail of quality around the sinusoidal front
Sample benchmark: Aggregated mesh quality

Aggregated histogram of element quality over all time steps

Average element quality: > 0.9 (close to ideal 1.0)
Worst element quality: > 0.6
Performance results

Same sample benchmark

- x100 finer metric tensor field, \(\approx 500k \) elements, \(\approx 250k \) nodes
- Compiled with Intel® Compiler Suite 14.0.1, \texttt{-Ofast} flag
- Executed on a dual-socket Xeon® E5-2650 system (Sandy Bridge, 2GHz, 8 cores/16 HT per socket), using thread-core affinity support
- Execution time over all time steps for:
 1. each of the four adaptive algorithms
 2. total adapt = sum of the four adaptive algorithms + mesh defragmentation
- \(\approx 1.5s \) per time step with 32 threads
- low compared with typical solution times
Performance results: execution time

![Graph showing execution time for different numbers of OpenMP threads and different mesh adaptation methods.]

- Coarsening
- Refinement
- Swapping
- Smoothing
- Overall Adapt
Performance results: speedup

![Graph showing performance results for different OpenMP thread counts. The graph compares the speedup for Coarsening, Refinement, Swapping, Smoothing, and Overall Adaptation across different thread counts (1, 2, 4, 8, 16(NUMA), 32(NUMA+HT)).]
Performance results: parallel efficiency

![Bar chart showing parallel efficiency for different numbers of OpenMP threads and various mesh adaptation processes.]
Performance Results

- Coarsening and smoothing scale well
 - Scalability is mostly limited by thread synchronisation at the end of every independent set
- Refinement and swapping are further affected by bandwidth saturation
 - Enabling hyperthreading improves performance considerably
 - Bandwidth saturation is only to be expected for an application with little data locality
Can we do better?

- Thread synchronisation is the main factor limiting parallel scalability.
- Colouring and the deferred-operations mechanism involve thread synchronisation.
- Alternative: optimistic execution
 - Inspired by the Galois framework (Pingali et al.).
 - Lock associated with every mesh vertex.
 - A thread tries to acquire the locks of all vertices in a local mesh patch.
 - If one of the locks is already held by another thread, abort.
 - Early experimentation: abort ratio < 0.01%.
 - Single-threaded execution is slower (acquiring/releasing locks is expensive).
 - But code becomes more scalable (Pingali reports parallel efficiency of > 70% on a 512-core SGI Ultraviolet system).
Conclusions

- PRAgMaTIc produces high-quality adapted meshes
- Anisotropic mesh adaptivity sounds expensive and hard to parallelise
- It can be fast enough to pay off in common usage scenarios
- Some remaining thread synchronisation and bandwidth saturation are currently the limiting factors
- Current focus is on performance optimisation for 3D and MPI
- Inherent difficulty of parallelising complex, irregular algorithms:
 - Optimistic colouring, deferred operations, worklists, work-stealing scheduler proved to be keys to high performance
 - This irregular compute methodology can be used in other applications with mutable irregular data
Acknowledgements and further reading

PRAgMaTIc is brought to you by (alphabetically):

- **Dr. Gerard J. Gorman**, g.gorman@imperial.ac.uk, Department of Earth Science and Engineering, Imperial College London, UK
- **Prof. Paul H. J. Kelly**, p.kelly@imperial.ac.uk, Department of Computing, Imperial College London, UK
- **Georgios Rokos**, georgios.rokos09@imperial.ac.uk, Department of Computing, Imperial College London, UK

This project has been supported by Fujitsu Laboratories of Europe Ltd and the EPSRC (grant numbers EP/I00677X/1 and EP/L000407/1).