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Introduction

I Irregular applications:

• Use of unstructured or completely irregular data
• Mostly represented as graphs

I Challenges:

• Unpredictable memory access patterns
• Poor data locality
• Kernels end up being memory-bound rather than compute-bound
• Data-driven algorithms, hard to extract parallelism
• Fine-grained parallelism leads to frequent thread synchronisation

I Mutable dependencies:

• E.g. morph algorithms (Pingali et al.)
• Graph topology is mutated in non-trivial ways
• Any preprocessing is constantly invalidated
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Mesh adaptivty

I Need to study a real-world problem in order to develop techniques for
parallelising irregular kernels

I Unstructured meshes and finite element/volume modelling:

• Spatial domain discretised into triangles (in this talk we only
focus on 2D)

• Ideal for representing complex geometries (e.g. coastal
modelling)

• Numerical solutions of partial differential equations (PDEs)

I Mesh adaptivity methods:

• Allow dynamic control of solution error
• Keep the resolution in the goldilocks zone - not too high and not

too low
• Minimise computational cost for a specific model accuracy
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Example
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Example: Detail along the wave front

I Elements are stretched along the direction of the front
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Error control

I Initial mesh generated a priori :

• Difficult to generate a mesh that is both efficient and resolves
the solution where required

• Particularly difficult for multi-scale problems

I Local error estimates

• Error estimate transformed to a metric tensor field (MTF)
• Discretised vertex-wise
• Tensor at some vertex specifies local size and shape of an

element containing that vertex which is required to achieve a
specific error tolerance

I Support for anisotropic problems

• PDE exhibits directional dependencies (desired element size and
shape) encoded in a MTF

• E.g. higher resolution is required perpendicular to a shock front
(where flow is more complex) than along the shock
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Metric tensor

I A metric tensor is a symmetric matrix, 2x2 in 2D, 3x3 in 3D
I Defines length of vectors
I Allows us to calculate inner products in generalised spaces, in the

same way the dot product defines distance in Euclidean space
I Example in 2D with vertices V1(x1, y1), V2(x2, y2) and edge

E = (x0, y0) = (x2 − x1, y2 − y1)
• Length in Euclidean space given by the dot product:

LEuclidean = ‖ E ‖ =
√

E · E =
√

x20 + y20

• Edge length with respect to a metric tensor M =

[
A B
B C

]
:

LM = ‖ E ‖M =
√

ETME =

√[
x0y0

] [A B
B C

] [
x0
y0

]
=

=
√

x20A + 2x0y0B + y20C

(1)
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Element size and shape

I Metric tensor in the middle of a triangle
• Linear interpolation of metric tensors at the three vertices

I Eigenvalue decomposition of a 2D metric tensor:

M = QΛQT =

[
Q00 Q01

Q10 Q11

] [
λ0
λ1

] [
Q00 Q10

Q01 Q11

]
I Each eigenvalue λi encodes the required element size in the direction

of the corresponding eigenvector Qi
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Adaptive algorithms

I 4 adaptive algorithms

• Coarsening

• Refinement

• Swapping

• Smoothing

h-adaptivity −→ mesh topology is modified

r-adaptivity −→ mesh topology is not modified

I Mesh adaptation

• Element quality functional measures ’distance’ from ideal
element as defined by metric field

• Iterative application of local mesh operations until the quality is
within some threshold

• h-adaptivity: morph algorithms
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Coarsening

I Done via edge collapse: vertex VB collapses onto VA, removing the
dashed edge and the adjacent elements from the mesh (Li et al. 2005)

I Every vertex is examined to determine onto which neighbour (if any)
it can collapse

I If a vertex is removed the local neighbourhood is modified, so all
neighbours are marked for re-examination
=⇒ Propagation of coarsening
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Refinement

I Edge and element refinement: long edges are split, leading to 1:2
(bisection), 1:3 or 1:4 (regular refinement) division of elements, which
increases local mesh resolution (Li et al. 2005)

I At first, all edges are visited and long edges are split
I Next up, elements with a split edge are split according to the number

of split edges
I No need for propagation, just execute refinement kernel again

Georgios Rokos (Imperial College London) Anisotropic Mesh Adaptation for the Manycore Era April 23, 2015 11 / 36



Swapping

I Edge swapping: edges shared between two elements can be flipped if
the minimum quality of the element pair is raised (Li et al. 2005)

I Improves mesh quality without increasing the number of elements

I Once an edge has been flipped, all adjacent edges are marked for
re-examination
=⇒ Propagation of swapping
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Smoothing

I Implemented as optimisation-based vertex smoothing: a vertex ui is
relocated to a new position so that the quality of the worst element
among {ei ,0..ei ,5} is maximised (Freitag et al. 1995)

I Linear search problem in the direction of the steepest ascent of the
derivative of the quality functional

I Smoothing is propagated
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Topological hazards

Example:

I One thread coarsens edge VBVC , VB collapses onto VC

I Another thread coarsens edge VCVD , VC collapses onto VD

=⇒ VB collapses onto a vertex (VC ) which is being deleted!
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Topological hazards: Mesh colouring

Solution: Mesh colouring

I Nodes are processed in batches of independent sets
• Guarantees that adjacent nodes cannot collapse at the same time

I colouring is in the loop
• Need it to be fast and use as few colours as possible

I colouring algorithm by Çatalyürek et al.
• Based on optimistic/speculative execution
• We developed an improved version (more on that offline)
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Race conditions

Example: updating adjacency lists

I One thread coarsens edge VBVC , VB collapses onto VC

• adjacency lists of VC are modified
• e.g. VA must be added to the node-node list of VC

I Another thread coarsens edge VDVC , VD collapses onto VC

• adjacency lists of VC are modified
• e.g. VE must be added to the node-node list of VC

=⇒ Both threads try to modify the node-node list of VC
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Race conditions: Deferred updates

Solution: Defer updates until the independent set has been processed

I Allocate lists L[i ][j] of
deferred updates,
i , j = 0..nthreads − 1

I A thread Ti stores
updates pertaining to
vertex VA in L[Ti ][j],
j = hash(VA)%nthreads

I At the end, every thread
Tj commits all updates
in L[i ][Tj ], i=0..N−1

I Advantage: Every thread
visits only those updates
it is responsible for
committing =⇒ FAST!
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Worklists

Worklist: A set of workitems which will be processed, e.g. a global worklist
of nodes in an independent set

I Threads colour the mesh in parallel

• Every thread stores the nodes it has coloured in local (private)
arrays, local[Ti ][colour ], colour=0..ncolours

• For each colour C , we need to concatenate all private arrays
local[Ti ][C ], i=0..N−1 into a global array global[C ]

I Classic approach: Prefix sum (or “scan” in MPI terminology) on the
index in global[C ] for every thread

• Threads need to synchronise =⇒ SLOW!

I Alternative: Atomic fetch-and-add

• Introduced in OpenMP 3.1
• “atomic capture” directive
• Older compilers support it either via intrinsics or inline assembly
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Worklists: Example

1 // Pre−a l l o c a t e enough space
2 std : : vector<Item> globalWorkist ( some_appropriate_size ) ;
3 i n t worklistSize = 0 ;
4
5 #pragma omp p a r a l l e l
6 {
7 // I n i t i a l i s e a p r i v a t e l i s t
8 std : : vector<Item> private_list ;
9

10 #pragma omp f o r nowait

11 f o r ( all items which need to be processed ){
12 do_some_work ( ) ;
13 private_list . push_back ( item ) ;
14 }
15
16 // P r i v a t e v a r i a b l e − the i ndex i n g l o b a l w o r k l i s t
17 i n t idx ;
18
19 #pragma omp atomic capture

20 {
21 idx = worklistSize ;
22 worklistSize += private_list . size ( ) ;
23 }
24
25 memcpy(&globalWorklist [ idx ] , &private_list [ 0 ] , private_list . size ( ) ∗ s i z e o f ( Item ) ) ;
26 }

I Note the “nowait” clause at omp-for
• Threads need not synchronise at the end of the loop =⇒ FAST!
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Loop scheduling: OMP

I Highly diverse loops.

I Example: Mesh refinement

• Element-refinement loop traverses all elements
• An element can be processed in 4 different ways:

no split, 1:2, 1:3, 1:4

=⇒ Load imbalance!

I OMP dynamic scheduling

• Perfect load balance
• Way too much overhead (millions of nodes/elements)

=⇒ Poor performance

I OMP guided scheduling

• Decent load balance, but it could be better
• Almost no overhead

=⇒ Much better performance
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Loop scheduling: Work-stealing

I Work-stealing scheduler

• Very good load balance
• Relatively little overhead

=⇒ Work-stealing is the way to go!

I OMP does not support work-stealing:

• We had to implement it manually

I Hand-written scheduler implements an improved version of the classic
work-stealing algorithm:

• Excellent load balance
• Very little overhead

=⇒ Best performance

I Work on this scheduler is still in progress:

• Preliminary results from synthetic benchmarks: outperforms
Intel R©Cilk

TM
Plus work-stealing
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PRAgMaTIc

I Parallel anisotRopic Adaptive Mesh ToolkIt:

• 2D/3D mesh adaptivity framework
• Open source, under the BSD license
• Available on Github
https://github.com/meshadaptation/pragmatic

I Implements all aforementioned adaptive algorithms

I Hybrid OpenMP/MPI support

I Currently being integrated with Dolfin (FEniCS) and DMPlex
(PETSc)
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PRAgMaTIc: Sample benchmark

A synthetic solution ψ is defined to vary in time and space for some value
of the period T :

ψ(x , y , t) = 0.1 sin

(
50x +

2πt

T

)
+ arctan

(
− 0.1

2x − sin
(
5y + 2πt

T

))
Benchmark solution field for some time step ti
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Sample benchmark: Initial mesh

Initial, auto-generated mesh
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Sample benchmark: Adapted mesh snapshot

Adapted mesh for time step ti
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Sample benchmark: Mesh quality snapshot

Quality of adapted mesh for time step ti
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Sample benchmark: Mesh quality detail

Detail of quality around the sinusoidal front
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Sample benchmark: Aggregated mesh quality

Aggregated histogram of element quality over all time steps

I Average element quality: > 0.9 (close to ideal 1.0)

I Worst element quality: > 0.6
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Performance results

Same sample benchmark

I x100 finer metric tensor field, ≈ 500k elements, ≈ 250k nodes

I Compiled with Intel R©Compiler Suite 14.0.1, -Ofast flag

I Executed on a dual-socket Xeon R©E5-2650 system (Sandy Bridge,
2GHz, 8 cores/16 HT per socket), using thread-core affinity support

I Execution time over all time steps for:

(1) each of the four adaptive algorithms
(2) total adapt = sum of the four adaptive algorithms + mesh

defragmentation

I ≈ 1.5s per time step with 32 threads

I low compared with typical solution times
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Performance results: execution time
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Performance results: speedup
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Performance results: parallel efficiency
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Performance Results

I Coarsening and smoothing scale well

• Scalability is mostly limited by thread synchronisation at the end
of every independent set

I Refinement and swapping are further affected by bandwidth saturation

• Enabling hyperthreading improves performance considerably
• Bandwidth saturation is only to be expected for an application

with little data locality
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Can we do better?

I Thread synchronisation is the main factor limiting parallel scalability

I colouring and the deferred-operations mechanism involve thread
synchronisation

I Alternative: optimistic execution

• Inspired by the Galois framework (Pingali et al.)
• Lock associated with every mesh vertex
• A thread tries to acquire the locks of all vertices in a local mesh

patch
• If one of the locks is already held by another thread, abort
• Early experimentation: abort ratio < 0.01%
• Single-threaded execution is slower (acquiring/releasing locks is

expensive)
• But code becomes more scalable (Pingali reports parallel

efficiency of > 70% on a 512-core SGI Ultraviolet system)
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Conclusions

I PRAgMaTIc produces high-quality adapted meshes

I Anisotropic mesh adaptivity sounds expensive and hard to parallelise

I It can be fast enough to pay off in common usage scenarios

I Some remaining thread synchronisation and bandwidth saturation are
currently the limiting factors

I Current focus is on performance optimisation for 3D and MPI

I Inherent difficulty of parallelising complex, irregular algorithms:

• Optimistic colouring, deferred operations, worklists, work-stealing
scheduler proved to be keys to high performance

• This irregular compute methodology can be used in other
applications with mutable irregular data
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