The Cost of Synchronizing a Billion Processes lvy Bo Peng, Stefano Markidis, Erwin Laure KTH Royal Institute of Technology

Gordon Moore: what do you think is the limit of Moore's Law? Stephen Hawking: the ultimate limit is the speed of light and the size of a single atom

Outline

- A Billion-Way Parallelism at Exascale.
- The Cost of Synchronizing Imbalanced Processes
- A LogP Monte Carlo Simulator
- Synchronizing a billion processes
 - Communication- and imbalance-dominated synchronization.
 - The impact of the number of cores per node
- Conclusions

A Billion-Way Parallelism at Exascale

- We are now million-way parallelism:
 - Thianhe-2 (33 PF)= 3,120,000 cores
 - Sequoia (17 PF) = 1,572,864 cores
- Nodes are becoming fatter but not faster
 - Exascale supercomputers are expected to have many cores per node^[1]
 - Performance growth mainly comes from the increase of core number not the performance of a single core
- Network latency lags behind bandwidth
 - Hide it if we cannot improve it
 - Hide more when problem scales up

^[1]Thakur, Rajeev, et al. "MPI at Exascale." *Proceedings of SciDAC* 2 (2010).

Process Imbalance

- Process imbalance is statistically inevitable on billions of processes
- Two major sources:
 - OS and architecture noises
 - Load imbalance
- A single slow process could impact the global performance:
 - Blocking collective operations
 - Non-blocking point-topoint operations

Markidis, Stefano, et al. "Idle waves in high-performance computing." Physical Review E 91.1 (2015)

Synchronization in Message Passing Systems

- Synchronization is done through point-to-point Communications.
- Several algorithms for synchronization with different communication cost.
- Process imbalance causes processes to reach the synchronization point at different time

Dissemination barrier on 4 imbalanced processes.

SYNC = COMM + IMB

Can SYNC \leq COMM + IMB ?

Imbalance Absorption with Latency Hiding

Process imbalance can be hidden (absorbed) by communication

An example of full imbalance absorption using a linear barrier on three processes

EPiGRAN

Different synchronization algorithms have different absorption property. Algorithms with higher absorption rates not necessarily have higher communication costs.

The LogP Model^[2]

- We use the LogP model to evaluate communication cost:
 - L = the largest latency between any two processes (approx. 1-10 us on modern network)
 - o = CPU overhead in message transmission (on snd and recv ops)
 - -P = number of nodes
 - g gap between two messages
- We added:
 - -N = number of processes per node
- We assume instantaneous synchronization on the same node (≈100 ns vs ≈5 us)

D. Culler, et al. "LogP: towards a realistic model of parallel computation." In Princ. Pract. of Par. Progr., 1993.

 Cost for one message is L + 20
 Sync. algorithms need log(P) communication cost or more

The Process Imbalance Model

- We use two random distribution functions for modeling imbalance:
 - Normal
 - Exponential
- The imbalance time scale is characterized by standard deviation σ

Normal pdf

Exponential pdf

The LogP Monte Carlo Simulator

- These quantities are calculated as expected values
 - Synch = time difference
 between first enter and
 last exit from barrier
 - Imbalance = max. time difference reaching the sync point

- Effective Imbalance = Synch Comm
- We study representative barrier algorithms in each complexity category:
 - MCS Tree
 - Tournament 2, 4, 16-way
 - Dissemination

Ivy Bo Peng et al. "The cost of synchronizing imbalanced processes in message passing systems" submitted to CLUSTER

Synchronizing a Billion Processes $\sigma = L + 2o$

Synchronizing a Billion Processes $\sigma = 4(L + 2o)$

EPiGRAN

 2^{20} nodes, 1024 procs per node, normal imbalance distribution with $\sigma = 3(L + 20) = 16.5$ us

Imbalance- v.s Communication-Dominated Synchronization

Asymptotic upper bound for impact of imbalance > impact of communication \approx 1.7 $\sigma/(L+2o)$

Dissemination barrier, 1024 procs per node, normal imbalance distribution with $\sigma = L + 2o = 5.5$ us

Impact of Number of Cores per Node

Synchronizing One Billion Processes

1 billion processes, normal imbalance distribution with $\sigma = L + 2o = 5.5$ us

Conclusions

- Process Imbalance with time scales greater than the time for sending one message will impact synchronization at exascale.
- Certain synchronization algorithms (with not optimal communication cost) allow to hide imbalance with communication.
- Larger number of cores per node increases the impact of process imbalance.
- Selection of the optimal synchronization algorithms should not only consider communication cost but also imbalance. absorption.

Thanks!

