
PERFORMANCE OPTIMISATION

ON XEON PHI

Adrian Jackson, Michele Weiland, Fiona Reid, Manos Farsarakis,

David Scott

adrianj@epcc.ed.ac.uk

PERFORMANCE

DEOPTIMISATION ON XEON PHI

Adrian Jackson, Michele Weiland, Fiona Reid, Manos Farsarakis,

David Scott

adrianj@epcc.ed.ac.uk

Intel’s IPCC program

• Collaboration between Intel and leading

Universities around the world
• “Intel® Parallel

Computing Centers
are universities,
institutions, and labs
that are leaders in
their field, focusing on
modernizing
applications to
increase parallelism
and scalability
through optimizations
that leverage cores,
caches, threads, and
vector capabilities of
microprocessors and

coprocessors.”

IPCC Proposal

• Two main aims

• Port and

optimise codes
for Xeon Phi

• Optimise codes
for Xeon for
ARCHER system

• Target ‘Grand Challenges’ codes which are also

heavily used in the UK

• codes we have strong knowledge of/working
relationship with

Intel Xeon Phi

• Intel Larrabee: “A Many-Core x86 Architecture for Visual Computing”

• Release delayed such that the chip missed competitive window of
opportunity.

• Larrabee was not released as a competitive product, but instead a
platform for research and development (Knight’s Ferry).

• Knights Corner derivative chip

• Intel Xeon Phi – co-processor

• Many Integrated Cores (MIC) architecture. No longer aimed at
graphics market

• Instead “Accelerating Science and Discovery”

• PCIe Card

• 60 cores/240 threads/1.054 GHz

• 8 GB/320 GB/s

• 512-bit SIMD instructions

• Hybrid between GPU and many-core CPU

Intel Xeon Phi

3100 series 5100 series 7100 series

cores 57 60 61

Clock frequency 1.100 GHz 1.053 GHz 1.238 GHz

DP Performance 1 Tflops 1.01 TFlops 1.2 TFlops

Memory Bandwidth 240 GB/s 320 GB/s 352 GB/s

Memory 6 GB 8 GB 16 GB

• Usable in different ways
• Offload kernels

• “Native” direct run applications

Achievable Performance

• 1 to 1.2 TFlop/s double precision performance
• Dependent on using 512-bit vector units

• And FMA instructions

• 240 to 352 GB/s peak memory bandwidth

• ~60 physical cores
• Each can run 4 threads

• Must run at least 2 threads to get full instruction issue rate

• Don’t think of it as 240 threads, think of it as 120 plus more if
beneficial

• 2.5x speedup over host is good performance
• Highly vectorised code, no communications costs

• MPI performance
• Can be significantly slower than host

Serial code

Slide from Intel

PingPong Bandwidth

PingPong Latency

PingPong Latency

MPI_Allreduce

General approach

• Work on 3 codes
• GS2, COSA, and CP2K

• All FORTRAN

• Investigate and optimise vectorisation of codes
• Use profiler and compiler tools to evaluate vectorisation

• Modify computationally expensive code to improve
vectorisation

• Improve/implement hybrid parallelisation
• Can help for both standard and phi systems

• Reduce memory footprint

• Reduce serial code
• I/O etc….

GS2

• Flux-tube gyrokinetic code
• Initial value code

• Solves the gyrokinetic equations for perturbed distribution functions
together with Maxwell’s equations for the turbulent electric and
magnetic fields

• Linear (fully implicit) and Non-linear (dealiased pseudo-spectral)
collisional and field terms

• 5D space – 3 spatial, 2 velocity

• Different species of charged particles

• Advancement of time in Fourier space

• Non-linear term calculated in position space
• Requires FFTs

• FFTs only in two spatial dimensions perpendicular to the magnetic field

• Heavily dominated by MPI time at scale
• Especially with collisions

Initial hybrid version

• Performance of existing version

New hybrid implementation

• Still funnelled communication model

• OpenMP done at a higher level in the code

• Single parallel region per time step

• Better can be achieved (single parallel region per run)

• Some code excluded but computationally

expensive code all hybridised
MPI processes OpenMP threads Execution time (seconds)

192 1 16.54

96 2 18.34

64 3 16.46

48 4 30.86

32 6 28.3

Total runtime

1

10

100

10 100 1000

T
im

e

(m
in

u
te

s)

Nodes on ARCHER (24 cores per node)

MPI

Hybrid (2 threads)

Hybrid (3 threads)

Hybrid (4 threads)

Hybrid (6 threads)

Port to Xeon Phi

• Pure MPI code performance:
• ARCHER (2x12 core Xeon E5-2697, 16 MPI

processes): 3.08 minutes

• Host (2x8 core Xeon E5-2650, 16 MPI processes): 4.64
minutes

• 1 Phi (176 MPI processes): 7.34 minutes

• 1 Phi (235 MPI processes): 6.77 minutes

• 2 Phis (352 MPI processes): 47.71 minutes

• Hybrid code performance
• 1 Phi (80 MPI processes, 3 threads each): 7.95 minutes

• 1 Phi (120 MPI processes, 2 threads each): 7.07
minutes

Vector (de)optimisations

• Vector optimising work unsuccessful

• A number of poorly vectorising targets identified

• Code restructuring and directives not able to improve
performance

Function Compiler flags Compiler directives Execution time

-O2 (original) -O2 (original) 16.46

invert_rhs_1 -align array64byte attributes align, vector aligned 16.73

get_source_term -align array64byte attributes align, vector aligned 16.99

get_source_term -align array64byte attributes align, vector aligned (only for variables
gexp1, gexp2 and gexp3)

16.72

Complex number optimisation

• Much of GS2 uses FORTRAN Complex numbers

• However, often imaginary and real parts are treated

separately

• Can affect vectorisation performance

• Work underway to replace with separate arrays

• Initial performance numbers demonstrate performance
improvement on Xeon Phi

• 2-3% for a single routine when using separate arrays

COSA

• Fluid dynamics code

• Harmonic balance (frequency domain approach)

• Unsteady navier-stokes solver

• Optimise performance of turbo-machinery like problems

• Multi-grid, multi-level, multi-block

code

• Parallelised with MPI and with

MPI+OpenMP

100

1000

10000

100 1000 10000

R
u

n
ti

im
e

 (
se

co
n

d
s)

Tasks (either MPI processes or MPI processes x OpenMP Threads)

COSA Hybrid Performance

MPI

Hybrid (4 threads)

Hybrid (3 threads)

Hybrid (2 threads)

Hybrid (6 threads)

MPI Scaling if continued perfectly

MPI Ideal Scaling

Xeon Phi Performance
Configuration Number of hardware

elements
Occupancy Runtime (s)

8 MPI processes 1/2 8/16 2105.71

16 MPI processes 2/2 16/16 1272.54

64 MPI processes 1/2 64/240 3874.45

64 MPI processes 3
OpenMP threads

1/2 192/240 2963.58

118 MPI processes
4 OpenMP threads

2/2 472/480 2118.05

128 MPI processes
3 OpenMP threads

2/2 384/480 1759.30

• Hardware:
– 2 x Xeon Sandy Bridge 8-core E5-2650 2.00GHz
– 2 x Xeon Phi 5110P 60-core 1.05GHz

• Test case
– 256 blocks
– Maximum 7 OpenMP threads

Serial optimisations

• Manual removal of floating point loop invariants divisions

do ipde = 1,4

fac1 = fact * vol(i,j)/dt

end do

recip = 1.0d / dt

do ipde = 1,4

fact1 = fact * vol(i,j) * recip

end do

• Provides ~15% speedup so far on Xeon Phi
• No real benefit noticed on host

• Changes the results

I/O

• Identified that reading input is now significant

overhead for this code

• Output is done using MPI-I/O, reading is done serially

• File locking overhead grows with process count

• Large cases ~GB input files

• Parallelised reading data

• Reduce file locking and serial parts of the code

• One or two orders of magnitude improvement in

performance at large process counts

• 1 minute down to 5 seconds

Future work

• Further serial optimisation

• Cache blocking

• 3D version of the code now developed

• Porting optimised and hybrid version to this

Configuration Number of hardware
elements

Occupancy Runtime (s)

8 MPI processes 1/2 8/16 2105.71

16 MPI processes 2/2 16/16 1272.54

128 MPI processes 1/2 128/240 1903.51

64 MPI processes 3
OpenMP threads

1/2 192/240 2214.56

128 MPI processes
3 OpenMP threads

2/2 384/480 1503.45

CP2K

• Atomistic and molecular simulations of solid state,
liquid, molecular, and biological system

• MPI and hybrid parallelisations implemented

• Heavily uses internal and external libraries for core
computations

• Other sites working on Xeon Phi
• Offload functionality

• Investigating compiler optimisations

• EPCC has previously worked on a native mode Xeon
Phi port
• Performance not great, 50% compared to CPU version (16

cores), low memory requirement restricts accuracy

• This work identified a number of vectorisation targets

CP2K Performance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

T
im

e
 (

s
e

c
o

n
d

s
)

Number of processors

CP2K
qs_mol_dyn_low

calculate_rho_elec
integrate_v_rspace

cannon_multiply_low

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

ru
n

ti
m

e
 a

s
 r

e
p

o
rt

e
d
 b

y
 P

e
rf

to
o

ls
-l

it
e

Number of processors

ETC
MPI

USER

CP2K Test Suite

• Regression test suite and continuous integration
testing important to ensure CP2K maintains
correctness
• Important as it informs which compilers and libraries

users can build the application with

• Ported test suite and framework to enable use of
Intel compilers and MKL libraries
• Build both on host and Xeon Phi

• Essential task before code modification could be
undertaken
• Picked up a number of bugs with the code and Intel

compilers/libraries

Vector (de)optimisations

• Vector optimising work unsuccessful

• CP2K uses auto-tuning library routines for core kernels

• Vectorising these routines struggled due to code structure
Code version Time (seconds)
Original code 2.423632

Adding !DIR$ IVDEP to loop over ig 2.472624

Attempt 1: Array syntax 2.438629

Attempt 1: Array syntax + !DIR$ IVDEP on loop over ig *2.437631

Attempt 1: Array syntax + !DIR$ VECTOR ALWAYS on loop over ig 2.430630

Attempt 1: Array syntax + !DIR$ SIMD on loop over ig 2.463625

Attempt 1: Array syntax + !$OMP SIMD private(i,s) on loop over ig 2.484623

Attempt 1: Array syntax + align map and pol_x 2.479622

Attempt 1: Array syntax + align map and pol_x + !$OMP SIMD on loop over ig 2.524676

Attempt 2: use ivec(ig) array and array syntax 2.477623

Attempt 2: use ivec(ig) array and array syntax + !DIR$ IVDEP on loop over ig 2.473624

Attempt 2: use ivec(ig) array and array syntax + !DIR$ SIMD on loop over ig 2.580608

Attempt 2: use ivec(ig) array and array syntax + !$OMP SIMD private(i,s) on loop over ig 2.620602

Attempt 2: use ivec(ig) array and array syntax + localmap 1d array used to compute I 2.475624

Attempt 3: replace the ig loop with loops over countblocks and starti(ib) to stopi(ib)for each block of contiguous iterations 2.626000

Attempt 3: replace the ig loop with loops over countblocks and starti(ib) to stopi(ib)for each block of contiguous iterations + !DIR$ IVDEP on loop over i 2.625601

Attempt 3: replace the ig loop with loops over countblocks and starti(ib) to stopi(ib)for each block of contiguous iterations + !DIR$ VECTOR ALWAYS on loop over i 2.627600

Attempt 3: replace the ig loop with loops over countblocks and starti(ib) to stopi(ib)for each block of contiguous iterations + !DIR$ SIMD on loop over i 2.582607

Attempt 3: replace the ig loop with loops over countblocks and starti(ib) to stopi(ib)for each block of contiguous iterations + !$OMP SIMD private(s) on loop over i 2.634599

Attempt 4: as per attempt 3 but now split into two loops, one over ig and one over countblocks etc 2.769579

Attempt 4: as per attempt 3 but now split into two loops, one over ig and one over countblocks etc + !DIR$ IVDEP on loop over i 2.760580

Attempt 4: as per attempt 3 but now split into two loops, one over ig and one over countblocks etc + !DIR$ VECTOR ALWAYS on loop over i 2.755581

Attempt 4: as per attempt 3 but now split into two loops, one over ig and one over countblocks etc + !DIR$ SIMD on loop over i 2.754581

Attempt 4: as per attempt 3 but now split into two loops, one over ig and one over countblocks etc + !$OMP SIMD private(s) on loop over i 2.757580

Summary

• Working on large FORTRAN MPI (or hybrid) simulation
codes
• Already heavily optimised, no real low hanging fruit

• Single code base work highly favoured
• Large scale codes won’t maintain mixed source versions

• Favours native mode parallelisation

• Hybrid parallelisations will help elsewhere
• Obvious target for many MPI programs

• Intel compilers v15 has impacted performance across the
board for our codes
• Slower with v15 vs v14

• MPI across Xeon Phi’s can heavily impact performance
• Global comms dominated codes don’t currently scale

• Local comms codes can scale well

Acknowledgements

• Work supported by Intel Parallel Computing

Centre program

• Some work also supported by PRACE and

EPSRC Plasma HEC grant

