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Intel’s IPCC program

• Collaboration between Intel and leading 

Universities around the world
• “Intel® Parallel 

Computing Centers
are universities, 
institutions, and labs 
that are leaders in 
their field, focusing on 
modernizing 
applications to 
increase parallelism 
and scalability 
through optimizations 
that leverage cores, 
caches, threads, and 
vector capabilities of 
microprocessors and 

coprocessors.”



IPCC Proposal

• Two main aims

• Port and 

optimise codes 
for Xeon Phi

• Optimise codes 
for Xeon for 
ARCHER system

• Target ‘Grand Challenges’ codes which are also 

heavily used in the UK 

• codes we have strong knowledge of/working 
relationship with



Intel Xeon Phi

• Intel Larrabee: “A Many-Core x86 Architecture for Visual Computing”

• Release delayed such that the chip missed competitive window of 
opportunity.

• Larrabee was not released as a competitive product, but instead a 
platform for research and development (Knight’s Ferry). 

• Knights Corner derivative chip 

• Intel Xeon Phi – co-processor

• Many Integrated Cores (MIC) architecture. No longer aimed at 
graphics market

• Instead “Accelerating Science and Discovery”

• PCIe Card

• 60 cores/240 threads/1.054 GHz

• 8 GB/320 GB/s

• 512-bit SIMD instructions

• Hybrid between GPU and many-core CPU



Intel Xeon Phi

3100 series 5100 series 7100 series

cores 57 60 61

Clock frequency 1.100 GHz 1.053 GHz 1.238 GHz

DP Performance 1 Tflops 1.01 TFlops 1.2 TFlops

Memory Bandwidth 240 GB/s 320 GB/s 352 GB/s

Memory 6 GB 8 GB 16 GB

• Usable in different ways
• Offload kernels 

• “Native” direct run applications



Achievable Performance

• 1 to 1.2 TFlop/s double precision performance
• Dependent on using 512-bit vector units

• And FMA instructions

• 240 to 352 GB/s peak memory bandwidth

• ~60 physical cores
• Each can run 4 threads

• Must run at least 2 threads to get full instruction issue rate

• Don’t think of it as 240 threads, think of it as 120 plus more if 
beneficial

• 2.5x speedup over host is good performance
• Highly vectorised code, no communications costs 

• MPI performance
• Can be significantly slower than host



Serial code

Slide from Intel



PingPong Bandwidth



PingPong Latency



PingPong Latency



MPI_Allreduce



General approach

• Work on 3 codes
• GS2, COSA, and CP2K

• All FORTRAN

• Investigate and optimise vectorisation of codes
• Use profiler and compiler tools to evaluate vectorisation

• Modify computationally expensive code to improve 
vectorisation

• Improve/implement hybrid parallelisation
• Can help for both standard and phi systems

• Reduce memory footprint

• Reduce serial code
• I/O etc….



GS2

• Flux-tube gyrokinetic code
• Initial value code 

• Solves the gyrokinetic equations for perturbed distribution functions 
together with Maxwell’s equations for the turbulent electric and 
magnetic fields

• Linear (fully implicit) and Non-linear (dealiased pseudo-spectral) 
collisional and field terms

• 5D space – 3 spatial, 2 velocity

• Different species of charged particles

• Advancement of time in Fourier space

• Non-linear term calculated in position space
• Requires FFTs 

• FFTs only in two spatial dimensions perpendicular to the magnetic field

• Heavily dominated by MPI time at scale
• Especially with collisions



Initial hybrid version

• Performance of existing version



New hybrid implementation

• Still funnelled communication model

• OpenMP done at a higher level in the code

• Single parallel region per time step

• Better can be achieved (single parallel region per run)

• Some code excluded but computationally 

expensive code all hybridised
MPI processes OpenMP threads Execution time (seconds)

192 1 16.54

96 2 18.34

64 3 16.46

48 4 30.86

32 6 28.3



Total runtime
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Port to Xeon Phi

• Pure MPI code performance:
• ARCHER (2x12 core Xeon E5-2697, 16 MPI 

processes): 3.08 minutes

• Host (2x8 core Xeon E5-2650, 16 MPI processes): 4.64 
minutes

• 1 Phi (176 MPI processes): 7.34 minutes

• 1 Phi (235 MPI processes): 6.77 minutes

• 2 Phis (352 MPI processes): 47.71 minutes

• Hybrid code performance
• 1 Phi (80 MPI processes, 3 threads each): 7.95 minutes

• 1 Phi (120 MPI processes, 2 threads each): 7.07 
minutes



Vector (de)optimisations

• Vector optimising work unsuccessful

• A number of poorly vectorising targets identified

• Code restructuring and directives not able to improve 
performance

Function Compiler flags Compiler directives Execution time

-O2 (original) -O2 (original) 16.46

invert_rhs_1 -align array64byte attributes align, vector aligned 16.73

get_source_term -align array64byte attributes align, vector aligned 16.99

get_source_term -align array64byte attributes align, vector aligned (only for variables 
gexp1, gexp2 and gexp3)

16.72



Complex number optimisation

• Much of GS2 uses FORTRAN Complex numbers

• However, often imaginary and real parts are treated 

separately

• Can affect vectorisation performance

• Work underway to replace with separate arrays

• Initial performance numbers demonstrate performance 
improvement on Xeon Phi

• 2-3% for a single routine when using separate arrays



COSA

• Fluid dynamics code 

• Harmonic balance (frequency domain approach)

• Unsteady navier-stokes solver

• Optimise performance of turbo-machinery like problems

• Multi-grid, multi-level, multi-block 

code

• Parallelised with MPI and with 

MPI+OpenMP
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Xeon Phi Performance
Configuration Number of hardware 

elements
Occupancy Runtime (s)

8 MPI processes 1/2 8/16 2105.71

16 MPI processes 2/2 16/16 1272.54

64 MPI processes 1/2 64/240 3874.45

64 MPI processes 3 
OpenMP threads

1/2 192/240 2963.58

118 MPI processes
4 OpenMP threads

2/2 472/480 2118.05

128 MPI processes
3 OpenMP threads

2/2 384/480 1759.30

• Hardware: 
– 2 x Xeon Sandy Bridge 8-core E5-2650 2.00GHz
– 2 x Xeon Phi 5110P 60-core 1.05GHz

• Test case
– 256 blocks
– Maximum 7 OpenMP threads



Serial optimisations

• Manual removal of floating point loop invariants divisions

do ipde = 1,4

fac1 = fact * vol(i,j)/dt

end do

recip = 1.0d / dt

do ipde = 1,4

fact1 = fact * vol(i,j) * recip

end do

• Provides ~15% speedup so far on Xeon Phi
• No real benefit noticed on host

• Changes the results



I/O

• Identified that reading input is now significant 

overhead for this code

• Output is done using MPI-I/O, reading is done serially

• File locking overhead grows with process count

• Large cases ~GB input files

• Parallelised reading data

• Reduce file locking and serial parts of the code

• One or two orders of magnitude improvement in 

performance at large process counts

• 1 minute down to 5 seconds



Future work

• Further serial optimisation

• Cache blocking

• 3D version of the code now developed

• Porting optimised and hybrid version to this

Configuration Number of hardware 
elements

Occupancy Runtime (s)

8 MPI processes 1/2 8/16 2105.71

16 MPI processes 2/2 16/16 1272.54

128 MPI processes 1/2 128/240 1903.51

64 MPI processes 3 
OpenMP threads

1/2 192/240 2214.56

128 MPI processes
3 OpenMP threads

2/2 384/480 1503.45



CP2K

• Atomistic and molecular simulations of solid state, 
liquid, molecular, and biological system

• MPI and hybrid parallelisations implemented

• Heavily uses internal and external libraries for core 
computations

• Other sites working on Xeon Phi
• Offload functionality

• Investigating compiler optimisations

• EPCC has previously worked on a native mode Xeon 
Phi port
• Performance not great, 50% compared to CPU version (16 

cores), low memory requirement restricts accuracy

• This work identified a number of vectorisation targets



CP2K Performance
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CP2K Test Suite

• Regression test suite and continuous integration 
testing important to ensure CP2K maintains 
correctness
• Important as it informs which compilers and libraries 

users can build the application with

• Ported test suite and framework to enable use of 
Intel compilers and MKL libraries
• Build both on host and Xeon Phi 

• Essential task before code modification could be 
undertaken
• Picked up a number of bugs with the code and Intel 

compilers/libraries



Vector (de)optimisations

• Vector optimising work unsuccessful

• CP2K uses auto-tuning library routines for core kernels

• Vectorising these routines struggled due to code structure
Code version Time (seconds)
Original code 2.423632

Adding !DIR$ IVDEP to loop over ig 2.472624

Attempt 1: Array syntax 2.438629

Attempt 1: Array syntax + !DIR$ IVDEP on loop over ig *2.437631

Attempt 1: Array syntax + !DIR$ VECTOR ALWAYS on loop over ig 2.430630

Attempt 1: Array syntax + !DIR$ SIMD on loop over ig 2.463625

Attempt 1: Array syntax + !$OMP SIMD private(i,s) on loop over ig 2.484623

Attempt 1: Array syntax + align map and pol_x 2.479622

Attempt 1: Array syntax + align map and pol_x + !$OMP SIMD on loop over ig 2.524676

Attempt 2: use ivec(ig) array and array syntax 2.477623

Attempt 2: use ivec(ig) array and array syntax + !DIR$ IVDEP on loop over ig 2.473624

Attempt 2: use ivec(ig) array and array syntax + !DIR$ SIMD on loop over ig 2.580608

Attempt 2: use ivec(ig) array and array syntax + !$OMP SIMD private(i,s) on loop over ig 2.620602

Attempt 2: use ivec(ig) array and array syntax + localmap 1d array used to compute I 2.475624

Attempt 3: replace the ig loop with loops over countblocks and starti(ib) to stopi(ib)for each block of contiguous iterations 2.626000

Attempt 3: replace the ig loop with loops over countblocks and starti(ib) to stopi(ib)for each block of contiguous iterations + !DIR$ IVDEP on loop over i 2.625601

Attempt 3: replace the ig loop with loops over countblocks and starti(ib) to stopi(ib)for each block of contiguous iterations + !DIR$ VECTOR ALWAYS on loop over i 2.627600

Attempt 3: replace the ig loop with loops over countblocks and starti(ib) to stopi(ib)for each block of contiguous iterations + !DIR$ SIMD on loop over i 2.582607

Attempt 3: replace the ig loop with loops over countblocks and starti(ib) to stopi(ib)for each block of contiguous iterations + !$OMP SIMD private(s) on loop over i 2.634599

Attempt 4: as per attempt 3 but now split into two loops, one over ig and one over countblocks etc 2.769579

Attempt 4: as per attempt 3 but now split into two loops, one over ig and one over countblocks etc + !DIR$ IVDEP on loop over i 2.760580

Attempt 4: as per attempt 3 but now split into two loops, one over ig and one over countblocks etc + !DIR$ VECTOR ALWAYS on loop over i 2.755581

Attempt 4: as per attempt 3 but now split into two loops, one over ig and one over countblocks etc + !DIR$ SIMD on loop over i 2.754581

Attempt 4: as per attempt 3 but now split into two loops, one over ig and one over countblocks etc + !$OMP SIMD private(s) on loop over i 2.757580



Summary

• Working on large FORTRAN MPI (or hybrid) simulation 
codes
• Already heavily optimised, no real low hanging fruit

• Single code base work highly favoured
• Large scale codes won’t maintain mixed source versions

• Favours native mode parallelisation

• Hybrid parallelisations will help elsewhere
• Obvious target for many MPI programs

• Intel compilers v15 has impacted performance across the 
board for our codes
• Slower with v15 vs v14

• MPI across Xeon Phi’s can heavily impact performance
• Global comms dominated codes don’t currently scale

• Local comms codes can scale well
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