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Motivation of using Support Operator Technique 

General 2D and 3D computational meshes 
(block-structured, unstructured, mortar etc.) 

Conservative (fully conservative), monotonous (maximum 
principle), 2nd order difference schemes;  self-adjoint, 

positive definite difference operator 

Remarkable property:  rotationally-invariant 
difference schemes 

Robust numerical algorithm with guaranteed 
quality for multiscale simulations 



 
Support operator method for the second order 

differential equations 
 In the area O with the boundary O let’s consider common scalar-divergence boundary 

problem with, for example, Dirichlet boundary condition:  
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Our approach to a consistent approximation of differential operators:  
Support Operators Technique 

 

System (1) is considered along with (2). One operator is approximated directly; the other - 
in the way, that it satisfies the difference analogue of an integral identical equation : 
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The class of support operators schemes with 
grad as a support operator: metrical meshes 

To construct the difference scheme it is needed to: 

• introduce the difference grid in the computational domain 

• define mesh functions on the grid, which approximate functions of the continuous argument. 

 

 

 

 

 

 

 

 

Metrical meshes of support operators: 
 
We cover the computational domain O with 
the difference grid of general type, which 
consists of: 
nodes (ω),  
formed by nodes cells-polygons (Ω),  
bases (φ),  
edges (λ)  
linked to edges faces (σ(λ)) – boundaries of  
the balance node domains  d(ω).  
Closed around node ω surfaces 
 σ(λ(ω))  form node domains d(ω). 

Closed conjugated 
“Shifted” mesh 

Node domain 

To the nodes of the grid (ω) we assign 
unknown mesh function u. In this case in the 
natural way operator grad is approximated.  



Bases are formed by the system of the initial 
(covariant) basis vectors , formed by edges. 

Basis volume: 
 
 
 
 

The class of support operators schemes with 
grad as a support operator: metrical operators 
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Metrical calibration of the difference mesh 
consists in the choice of the volumes of basis with 
the natural normalization condition                        . 
                 ( )

V V







( )

V 
 

 Node volume: 

centers of cells and edges 
are the arithmetic average 
of radius vectors of nodes 

Contour, which links centers of the two 
adjacent by the edge cells or the cell with the 
boundary edge, represents an: 
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The class of support operators schemes with 
grad as a support operator: approximation 

On the edges we choose the positive direction. 

Divergence of the gradient field DIV: (φ)(ω) we 
define by approximation of the Gauss Th. on d(ω): 
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The class of support operators schemes with 
grad as a support operator: approximation 

On the edges we choose the positive direction. 

Gradient vector field GRAD: (ω)(φ) is given by its components in the bases: 
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Divergence of the gradient field DIV: (φ)(ω) we 
define by approximation of the Gauss Th. on d(ω): 
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Assuming in the bases φ under Xφ vector field Xυφ =K φGRADυ , we obtain self-
adjoint non-negative operator -DIV X υ : (ω)(ω) or -DIV K GRAD : (ω)(ω). 

 

This operator will be strictly positive, if at least in one boundary node of the 
closed difference mesh the Dirichlet boundary value problem is defined 

The class of support operators schemes with 
grad as a support operator: approximation 

On the edges we choose the positive direction. 

Gradient vector field GRAD: (ω)(φ) is given by its components in the bases: 
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Divergence of the gradient field DIV: (φ)(ω) we 
define by approximation of the Gauss Th. on d(ω): 
 
 
  

( )Δ – approximation of the correspondent differential expressions, so we have: 
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Implicit heat diffusion solver based on support 
operator technique: parallel implementation 

Solver is implemented within the MARPLE3D 
package;  C++, MPI 

 
 
 
 Distributed algorithms are used in all stages 

of the problem solution: 
 

– distributed mesh generation 
– partitioning and repartitioning of 

meshes (ParMetis) 
– parallel solution of the problem 
– parallel analysis of the results 

(ParaView) 
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Domain decomposition for parallel computations 
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Computations on the 
distributed mesh 

“Fictive” mesh 
elements 
(margins) 

Implicit schemes lead 
to the distributed 
systems of linear 
equations (some 
equations involve the 
unknown values from 
the neighbouring 
subdomains). For the 
solution of these 
systems, the package 
Aztec is used. 
 



 
Example of numerical simulations using support 
operator technique: propagation heat wave test 

 Let’s consider heat diffusion equation in the following form: 

where T – unknown temperature, k0 , α – free coefficients, s ≡ x|y|z. This 
equation with the following initial and boundary conditions:          

has an analytical solution in the form of propagation with the constant velocity wave: 

where D – unknown temperature, s0 – free parameter 



 
Example of numerical simulations using support 
operator technique: propagation heat wave test 

 Let’s consider heat diffusion equation in the following form: 

where T – unknown temperature, k0 , α – free coefficients, s ≡ x|y|z. This 
equation with the following initial and boundary conditions:          

has an analytical solution in the form of propagation with the constant velocity wave: 

where D – unknown temperature, s0 – free parameter 

Simulations were 
implemented on 3D, 2D 
and 1D meshes with the 
typical size of s = 3 

Test parameters: 
 
 
simulation time: 
t  from 0 to 0.4 
with constant time step 
 



 
Example of numerical simulations using support 
operator technique: propagation heat wave test 

 Let’s consider heat diffusion equation in the following form: 

where T – unknown temperature, k0 , α – free coefficients, s ≡ x|y|z. This 
equation with the following initial and boundary conditions:          

has an analytical solution in the form of propagation with the constant velocity wave: 

where D – unknown temperature, s0 – free parameter 

Simulations were 
implemented on 3D, 2D 
and 1D meshes with the 
typical size of s = 3 

Test parameters: 
 
 
simulation time: 
t  from 0 to 0.4 
with constant time step 
 

Inhomogeneity due to the physical 
task (grad  ∞, K = 0); essential 
an existence of a solution with a 
guaranteed quality 



Results of scaling of developed software on NERSC’s 
cluster: speed-up 

Optimal amount of cells per 
core: from 30k to 50k  
in case of one implicit solver 

Optimal amount of cells per 
core: from 10k to 40k  
in case of multiple solvers 



Results of scaling of developed software on NERSC’s 
cluster: efficiency 

Optimal amount of cells per 
core: from 30k to 50k  
in case of one implicit solver 

Optimal amount of cells per 
core: from 10k to 40k  
in case of multiple solvers 



Conclusion 
 

The numerical scheme based on support operator technique 
proves to be highly efficient for large parallel simulations of 

multiscale physical processes. 
 

Future developments: 
 

• Implementation of support operators technique on mortar meshes. 
 

• Developing of robust solvers for 3D linear and nonlinear elasticity 
problems within the MARPLE3D package. 
 

• Developing our own GPU oriented solvers for solution of large 
sparse linear systems for effective hybrid computations 



Thank you for your attention! 


