
Towards Resilient Chapel

Towards Resilient Chapel

Konstantina Panagiotopoulou Hans-Wolfgang Loidl

[kp167 1, H.W.Loidl 2] @hw.ac.uk

Heriot-Watt University

EASC 2015
21st - 23rd April 2015, Edinburgh

Towards Resilient Chapel

Overview

1 The Need for Resilience

2 Chapel Overview

3 Resilient Design

4 Resilient Implementation

5 Functionality and Performance Results

6 Conclusion & Future Work

7 Contigency

Towards Resilient Chapel

The Need for Resilience

1 The Need for Resilience

2 Chapel Overview

3 Resilient Design

4 Resilient Implementation

5 Functionality and Performance Results

6 Conclusion & Future Work

7 Contigency

Towards Resilient Chapel

The Need for Resilience

Resilience

Resilience : the ability of a system to maintain state awareness
and an accepted level of operational normalcy in response to
disturbances

of components in modern High Performance Computing (HPC)
systems (Tianhe-2 - 3 million cores, Sequoia 1.5 million cores)
⇒ challenge on resilience

Towards Resilient Chapel

The Need for Resilience

The Need for Resilience

today’s HPC systems ⇒ without failure handling strategies ⇒
Mean Time Between Failure is deteriorating

⇒ significant waist of their capacity on failure

molecular dynamics algorithms
safety critical systems
simulation algorithms that require precise results

⇒ multiple failures during execution
* Schroeder, Bianca, and Garth A. Gibson. ”Understanding failures in petascale computers.” Journal of Physics:
Conference Series. Vol. 78. No. 1. IOP Publishing, 2007

Towards Resilient Chapel

The Need for Resilience

Objectives

address hardware failure (on one or multiple nodes) during
execution of a Chapel program in a distributed setup

ensure program termination and execution of all tasks

complete transparency and automatic task adoption ⇒
no compiler changes ⇒ no extra programming effort

Towards Resilient Chapel

Chapel Overview

1 The Need for Resilience

2 Chapel Overview

3 Resilient Design

4 Resilient Implementation

5 Functionality and Performance Results

6 Conclusion & Future Work

7 Contigency

Towards Resilient Chapel

Chapel Overview

The PGAS programming model

The PGAS programming model

Partitioned Global Address Space (PGAS) languages
distributed memory hardware ⇒
programming with PGAS ⇒
globally shared memory

virtual global address space (one-sided message passing library
e.g GASNet)

Process/Thread

Address Space

Asynchrony :

each node executes multiple tasks from a task pool

nodes can invoke work on other nodes

Towards Resilient Chapel

Chapel Overview

The PGAS programming model

Chapel’s Locales and Tasks

Locale: an abstract unit of the target architecture with storage
and execution capabilities (e.g. a multi-core processor)
Multi-locale programs start on Locale 0 and scale out

Task

Locale

Task: Wrapper of a computation that may execute in parallel

Towards Resilient Chapel

Chapel Overview

Chapel’s Runtime System

Chapel’s Runtime System

GASNet - instantiation of the
Communication layer

endCounts - internal module
for tracking parallel task
completion

Towards Resilient Chapel

Resilient Design

1 The Need for Resilience

2 Chapel Overview

3 Resilient Design

4 Resilient Implementation

5 Functionality and Performance Results

6 Conclusion & Future Work

7 Contigency

Towards Resilient Chapel

Resilient Design

Resilient Design

Node failure: anything that prevents nodes in the system from
communicating

In Chapel we assume:
a distributed setup where all locales may fail
computation starts by default on Locale 0 and scales out
node failure = locale failure *flat locale model

⇒ target: task migration constructs

Towards Resilient Chapel

Resilient Design

Language Constructs : on

on ⇒ task migration

explicit to the Chapel programmer

control over locality of the task

logical continuation of the initial task on a different locale

blocking operation on the parent’s side

explicit synchgronisation point

Example:

w r i t e l n (” s t a r t on l o c a l e 0”) ;
on L o c a l e s [1] do
w r i t e l n (”now on l o c a l e 1”) ;
w r i t e l n (”on l o c a l e 0 a g a i n ”) ;

Towards Resilient Chapel

Resilient Design

Chapel’s Design Principles

Locality control :on construct ⇒ task migration
Task parallelism :begin, cobegin, coforall constructs ⇒
task creation
(unstructured, block-structured, loop-structured)

Parallelism and locality are orthogonal ⇒
all constructs can be combined arbitrarily
Fork operations are distinguished in blocking and non-blocking
based on the combinations of the above

Towards Resilient Chapel

Resilient Design

Data Redundancy

where? - resilient storage

in what form? - data structures
what kind of information?

copies of the evaluation context (body of migrated tasks)

status information on Locales

Towards Resilient Chapel

Resilient Design

Assumptions

locale 0 is failure free and acts as resilient storage

resilience is only supported during program execution - errors
during initialisation are fatal

a failing locale notifies for its failure – can be replaced in
the future by a hardware notification mechanism

tasks will execute till completion or not at all

*we aim to weaken these assumptions later on

Towards Resilient Chapel

Resilient Implementation

1 The Need for Resilience

2 Chapel Overview

3 Resilient Design

4 Resilient Implementation

5 Functionality and Performance Results

6 Conclusion & Future Work

7 Contigency

Towards Resilient Chapel

Resilient Implementation

Specifications

Version : 1.8.0

Platform :64-bit Linux

Compiler :GNU compiler suite

LocaleModel : flat

Communication conduit : gasnet

Tasks : fifo (over POSIX threads)

Memory : default(standard C malloc/free commands)

Atomics : intrinsics

Launcher :amudprun

Towards Resilient Chapel

Resilient Implementation

Data Structures

Data Structures

failed table [array of length # Locales]
stored on Locale 0
records failed nodes(tuple of node id’s and status variables)
updates via FAIL signals

transit msg list & transit arg list [linked lists]
stored on Locale 0
records in-transit fork operations
used for recovery in the non-blocking case
updates via IN TRANSIT and IN TRANSIT DEL signals

Towards Resilient Chapel

Resilient Implementation

Communication Functions

Communication Functions- Forking Operations

Base Idea:
Extend the current GASNet implementation to support resilience

on is implemented with a remote fork

switches to a different locale to execute the task

can express nested parallelism

leverages shared data to reduce memory copying

Towards Resilient Chapel

Resilient Implementation

Communication Functions

Fork Operations Examples

// on L o c a l e 0
on L o c a l e s [1] do
computat ion () ;
// back on L o c a l e 0

Listing 1: Distributed serial Chapel program

// on L o c a l e 0
begin on L o c a l e s [1] do
computat ion () ;
on L o c a l e s [2] do begin
computat ion () ;
// back to L o c a l e 0

Listing 2: Distributed parallel Chapel program

Towards Resilient Chapel

Resilient Implementation

Communication Functions

Blocking Fork

Locale 0 Locale X Locale Y

chpl_comm_fork

If (source == destination)

call function

else

send FORK

wait task_counter ==0

AM_signal

 task_counter --

AM_fork

copy fork

fork_wrapper

fork_wrapper

call function

send SIGNAL to locale 0

Towards Resilient Chapel

Resilient Implementation

Communication Functions

Failure Detection

Currently, receiving active notification from the node

TIMEOUT signal - src: failing locale dst: parent locale

The parent handles the recovery of the remote task

*we avoid setting a timeout period on the parent locale due to the
asynchronous nature of UDP messages and the overhead

Towards Resilient Chapel

Resilient Implementation

Communication Functions

Locale Status Updates

FAIL - src: parent locale dst: Locale 0

The parent has discovered a failure (of a child)

Locale 0 updates the failed table

FAIL UPDATE REQUEST - src: parent locale dst: Locale 0
FAIL UPDATE REPLY - src: Locale 0 dst: parent locale

The parent requests an update before launching a new fork
and block-waits on reply from Locale 0

Towards Resilient Chapel

Resilient Implementation

Communication Functions

Failure Recovery

Recovery is handled locally on the parent locale, since this is a
blocking operation

copies of the evaluation context
are available on the parent locale

Failure of the parent locale is handled on the closest living ancestor
(as a destination failure) unless this is Locale 0, which we assume
to be failure free and is root of the Locale tree

*such re-launchable functions are free of side-effects that you can’t undo; this has to be ensured by an external
mechanism and is outside the scope of this work

Towards Resilient Chapel

Resilient Implementation

Communication Functions

Resilient Blocking Fork

Locale 0 parent/ adopting Locale child Locale

chpl_comm_fork_resilient

If (source == destination)

call function

Else

check if destination is alive

if (source = locale 0)

 lookup destination

else

 send FAIL_UPDATE_REQUEST

 wait on the update

 if (destination is alive)

 send FORK

 wait on task_counter==0 or

 timeout

 if (timeout)

 if(source= locale 0)

 record failure

 else

 send FAIL

 else (destination is dead)

 call function

 task_counter --

AM_fail_update_reply

check node.alive

send ACK

AM_signal

task_counter --

AM_timeout

set timeout flag

AM_fork_resilient

fork_wrapper_resilient

fork_wrapper_resilient

If (status flag)

 send TIMEOUT to locale X

else

 call function

 send SIGNAL to locale 0AM_fail

record failure

AM_fail_update_request

lookup node

send FAIL_UPDATE_REPLY to locale X

failed_table
ID | STATUS

1

4

2 3
write

read

UNIX signal_handler

set local status flag

Testing framework

send UNIX signals

Towards Resilient Chapel

Resilient Implementation

Communication Functions

Key implementation aspects

four additional AM signals and handlers

one UNIX signal handler to signal failure on locale

array of failed locales

Towards Resilient Chapel

Functionality and Performance Results

1 The Need for Resilience

2 Chapel Overview

3 Resilient Design

4 Resilient Implementation

5 Functionality and Performance Results

6 Conclusion & Future Work

7 Contigency

Towards Resilient Chapel

Functionality and Performance Results

Constructed Programs - Resilient Blocking Fork - On

simpleons

Locale 1

Locale 2

Locale 0 on L o c a l e s [1] do
// computat ion () ;
on L o c a l e s [2] do
// computat ion () ;

Towards Resilient Chapel

Functionality and Performance Results

Constructed Programs - Resilient Blocking Fork - On

simpleontest

Locale 1

Locale 2

Locale 0

on L o c a l e s [1] do {
// computat ion () ;
on L o c a l e s [2] do
// computat ion () ;
}

Towards Resilient Chapel

Functionality and Performance Results

Constructed Programs - Resilient Blocking Fork - On

three on

Locale 1

Locale 2

Locale 0

Locale 3

on L o c a l e s [1] do {
// computat ion () ;
on L o c a l e s [2] do{
// computat ion () ;
on L o c a l e s [3] do
// computat ion () ;
}
}

Towards Resilient Chapel

Functionality and Performance Results

Constructed Programs - Resilient Blocking Fork - On

two two

Locale 1

Locale 2

Locale 0

Locale 3

Locale 2

on L o c a l e s [1] do {
// computat ion () ;
on L o c a l e s [2] do
// computat ion () ;
}
on L o c a l e s [3] do{
// computat ion () ;
on L o c a l e s [2] do
// computat ion () ;
}

Towards Resilient Chapel

Functionality and Performance Results

Constructed Programs - Resilient Blocking Fork - On

back

Locale 1

Locale 2

Locale 0

on L o c a l e s [1] do {
// computat ion () ;
on L o c a l e s [2] do{
// computat ion () ;
on L o c a l e s [1] do
// computat ion () ;
}
}

Towards Resilient Chapel

Functionality and Performance Results

Testing Framework

signal-based (overriding default GASNet handlers)

flexibly simulates node failures for small scale experiments.

assesses functionality of the prototype implementation

based on python scripts

2 testing modes
all: all locales (but Locale 0) fail [stress test]
rand: random number of locales fail

Limitation:

does not simulate failures at different times during program
execution

Towards Resilient Chapel

Functionality and Performance Results

Testing Platform

Experiments were performed on a 32-node Beowulf cluster (256
cores in total), connected via a Gigabit ethernet network Each
machine consists of:

two quad-core Xeon E5506 2.13GHz

12GB of main memory

three layered cache memory topology (256kB L2 and 4MB
shared L3 cache)

Towards Resilient Chapel

Functionality and Performance Results

Functionality Results- Resilient Blocking Fork - On

Towards Resilient Chapel

Functionality and Performance Results

Nested Blocking Fork Overhead

Nested Blocking Fork Overhead

The body of each migrated task is a black box for the parent
locale

Locale 0

on Locales[1] do

Body of task 1
some computation
on Locales[2] do

Body of task 2
some other computation

In the figure above, on failure of Locale 1

locale 0 adopts the task

reaches the nested on statement & launches the fork

with failures on every two adjacent locales
⇒ recovery on the parent leads to balanced executions

Towards Resilient Chapel

Functionality and Performance Results

Performance Results

Performance Results - On

Towards Resilient Chapel

Functionality and Performance Results

Ongoing Work

Ongoing Work - Non-Blocking Fork

Locale 0 Locale X Locale Y

chpl_comm_fork_nb
If (source == destination)

call function
else

send FORK_NB

//no wait

AM_fork_nb

fork_nb_wrapper

fork_nb_wrapper

call function

alloc new endCount
inc counter

dec counter

wait for counter==0

Chapel uses EndCount objects for each synchronised block to track the completion of parallel tasks

Towards Resilient Chapel

Functionality and Performance Results

Ongoing Work

In-Transit Message (non-blocking)

IN TRANSIT signal - src: parent locale dst: Locale 0

IN TRANSIT DEL signal - src: parent locale dst: Locale 0

Locale 0 keeps track of fork messages in-transit and uses them for
recovery The messages and arguments are stored in linked lists

s t r u c t c h p l c o m m t r a n s i t M s g {
c h p l f n i n t t f i d ;
i n t mid ;
i n t s r c ;
i n t d s t ;
void ∗ ack ;
i n t a r g s i z e ;
char∗ data ;
c h p l c o m m t r a n s i t M s g p n e x t ;
} ;

s t r u c t c h p l c o m m t r a n s i t A r g {
i n t a i d ;
i n t a r g s i z e ;
char ar g [0] ;
c h p l c o m m t r a n s i t A r g p n e x t ;
} ;

Towards Resilient Chapel

Functionality and Performance Results

Ongoing Work

Failure Notification(non-blocking)

TIMEOUTNB signal - src: failing locale dst: Locale 0

Locale 0 handles the recovery of the remote task
since the parent locale has exited (”fire and forget” nature of
non-blocking fork)
*we avoid recovery on the parent as this requires storing information on a
locale that might fail

Towards Resilient Chapel

Functionality and Performance Results

Ongoing Work

Resilient Non-Blocking Fork

Adopting Locale Parent locale Child Locale

chpl_comm_fork_nb_resilient
If (source == destination)

call function
else

send IN_TRANSIT
send FORK_NB

//no wait

AM_fork_nb_resilient

fork_nb_wrapper

fork_nb_wrapper_resilient
If(status flag)

call function
send IN_TRANSIT_DEL

else
send TIMEOUTNB

AM_in_transit
add msg and arg

AM_in_transit_del
delete msg and arg

AM_timeout_nb
record failure
look up msg and arg
reconstruct task
execute task

2 (a)

failed_table
ID | STATUS

msg_list
SRC | DST | F_ID

arg_list
SRC | DST | *ARG

1

2(b)

UNIX signal_handler
set local status flag

Testing framework
send UNIX signals

alloc new endCount
inc counter

wait for counter==0

dec counter

Towards Resilient Chapel

Functionality and Performance Results

Ongoing Work

Key implementation aspects

three additional signals and handlers

two linked lists for in-transit messages and arguments

one UNIX signal handler to update the locale’s status

array of failed locales

Towards Resilient Chapel

Functionality and Performance Results

Ongoing Work

this is not enough..

The lost task is recovered on Locale 0 but ..

Locale 0 cannot decrement the counter of the endCount object

⇒ the execution block-waits on the counter to become zero
⇒ gasnet timeout

Towards Resilient Chapel

Functionality and Performance Results

Ongoing Work

Strategies

fork operation on the failing locale but

memory is not accessible

infinite recovery

until gasnet timeout

decrement the counter on the failing locale on detection but

cannot get a handle to the endCount from the communication
layer; statically allocated by the compiler

counters may become zero before finishing recovery

override the endCounts mechanism on the runtime level &
extend task adoption policy for endCount’s
⇒ requires compiler changes

Towards Resilient Chapel

Functionality and Performance Results

Ongoing Work

Limitations

GASNet applies a policy of graceful exit on the event of node
crashes prohibits the exclusion of a node from the bootstrapped
group
⇒ we can only prevent nodes from communicating with a failed
node and recover the task spawned on a failed node

Towards Resilient Chapel

Conclusion & Future Work

1 The Need for Resilience

2 Chapel Overview

3 Resilient Design

4 Resilient Implementation

5 Functionality and Performance Results

6 Conclusion & Future Work

7 Contigency

Towards Resilient Chapel

Conclusion & Future Work

Conclusion

We have presented an initial design and prototype
implementation of
resilience for the PGAS language Chapel

Main features:

completely transparent implementation

automatic task adoption

data redundancy and extra inter-locale communication

changes only affect the runtime system, not the compiler

initial results (with constructed programs) demonstrate low
overheads

minimal set of assumptions

Towards Resilient Chapel

Conclusion & Future Work

Future Work

Future work focuses on:

non-blocking fork operations

distributed task adoption strategies; integration with Chapel’s
default data distributions

evolving systems; nodes resurrect or become available at a
later point in the execution

Towards Resilient Chapel

Conclusion & Future Work

References

Parallel Programmability and the Chapel Language
Chamberlain, Bradford L., David Callahan, and Hans P. Zima.
International Journal of High Performance Computing Applications
21.3 (2007): 291-312.

The Chapel Parallel Programming Language
-http://chapel.cray.com/

Resilient control systems: next generation design research
Rieger, Craig G., David I. Gertman, and Miles A. McQueen.
Human System Interactions, 2009. HSI’09. 2nd Conference on.
IEEE, 2009.

Evolution of supercomputers
Xie, Xianghui, et al.
Frontiers of Computer Science in China 4.4 (2010): 428-436.

An empirical performance study of chapel programming language
Dun, Nan, and Kenjiro Taura
Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2012 IEEE 26th International. IEEE, 2012.

Towards Resilient Chapel

Conclusion & Future Work

Thank you !

Towards Resilient Chapel

Contigency

Contigency

... some extra slides ...

Towards Resilient Chapel

Contigency

The Communication Layer

GASNet – the default instantiation of the communication layer on
Linux-based systems; a communication interface for the Global
Address Space languages

network-independent and language-independent

highly portable

Active Message(AM) interface on top of UDP

logically paired request and reply operations

Core functions return zero on success

on fatal error GASNet terminates the remaining nodes to
prevent creation of orphaned processes

Towards Resilient Chapel

Contigency

EndCounts (ChapelBase module)

Chapel uses EndCount objects to track the completion of parallel
tasks.
An endCount is allocated for each synchronised block.
The main function itself is governed by an endCount object

c l a s s EndCount {
v a r i : atomic int ,
t a s k C n t : taskCntType ,
t a s k L i s t : t a s k l i s t = n u l l T a s k L i s t ;

}
// f u n c t i o n s
pr oc e n d C o u n t A l l o c () ;
p r oc endCountFree (e : EndCount) ;
p r oc upEndCount (e : EndCount) ;
p r oc downEndCount (e : EndCount) ;
p r oc waitEndCount (e : EndCount) ;

Towards Resilient Chapel

Contigency

Language Constructs : cobegin

cobegin ⇒ block-structured task creation

creates a new task for each statement in the block

blocking operation on the parent’s side

heterogeneous tasks

Example:

cobegin {
consumer (1) ;
consumer (2) ;
p r o d u c e r () ;
}

Towards Resilient Chapel

Contigency

Language Constructs : begin

begin ⇒ unstructured parallelism

launch a new task on a new thread

continue with the next statement

join: explicit sync block or the implicit sync of the main
function

fire and forget

Example:

begin w r i t e l n (” h e l l o w o r l d ”) ;
w r i t e l n (” good bye ”) ;

Output:
hello world
good bye

or good bye
hello world

Towards Resilient Chapel

Contigency

Language Constructs : coforall

coforall ⇒ loop-structured task invocation

creates a new task for each iteration

blocking operation on the parent’s side

homogenous tasks

Example:

begin p r o d u c e r () ;
c o f o r a l l i i n 1 . . numConsumers {
consumer (i) ;
}

Towards Resilient Chapel

Contigency

endCount Allocation

The picture was taken from :

”Task Parallel Constructs in Chapel”, Thom Haddow, MSc dissertation, The University of Edinburgh, 2008

Towards Resilient Chapel

Contigency

endCount Allocation

	The Need for Resilience
	Chapel Overview
	The PGAS programming model
	Chapel's Runtime System

	Resilient Design
	Resilient Implementation
	Data Structures
	Communication Functions

	Functionality and Performance Results
	Nested Blocking Fork Overhead
	Performance Results
	Ongoing Work

	Conclusion & Future Work
	Contigency

