Performance Analysis and Optimisation of

METOFFICE UNIFIED MODEL ON A CRAY XC30

EASC 2015 Edinburgh

Karthee Sivalingam & NCAS - CMS, University of Reading

NCAS-CMS

The National centre for Atmospheric Science (NCAS) -Computational Modelling services (CMS) NCAS is one of the Natural Environment Research Council's (NERC) research centres.

AIMS

The science of climate change, including modelling and predictions

- Atmospheric composition, including air quality
- Weather, including hazardous weather
- Technologies for observing and modelling the atmosphere

HPC & CLIMATE

<u>Top 500 list Nov 2014</u>

RANK	SITE	SYSTEM	CORES	RMAX (TFLOPS)	RPEAK (tflops)
25	EPSRC/University of Edinburgh United Kingdom	ARCHER - Cray XC30, Intel Xeon E5 v2 12C 2.700GHz, Aries interconnect Cray Inc.	118,080	1,642.5	2,550.5
28	ECMWF United Kingdom	Cray XC30, Intel Xeon E5-2697v2 I2C 2.7GHz, Aries interconnect Cray Inc.	83,160	1,552.0	I,796.3
29	ECMWF United Kingdom	Cray XC30, Intel Xeon E5-2697v2 12C 2.7GHz, Aries interconnect Cray Inc.	83,160	1,552.0	1,796.3
30	Science and Technology Facilities Council - Daresbury Laboratory United Kingdom	Blue Joule - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	131,072	1,431.1	I,677.7
43	University of Edinburgh United Kingdom	DiRAC - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	98,304	1,073.3	I,258.3
	Met Office United Kingdom (BBC)	Cray XC40, Intel Haswell	480,000	16,000	16,000

OBJECTIVE

- Message passing , Threading and Vectorisation
- Message passing has scaling limitations
- Single node performance Threading and Vectorisation
- Intel x86, IBM Power, Coprocessors, Accelerators, ARM 64 bit
- Need for a HPC library that abstracts the architecture

METOFFICE UNIFIED MODEL

- The UM is a numerical modelling system, developed by the UK Met Office, and used for operational weather forecasting and climate prediction.
- It is licensed to the UK academic community for research.
- Joint Weather and Climate Research Programme (JWCRP), a strategic partnership between NERC and the Met Office for model development.
- It is used by forecast centres and climate agencies around the world

CLIMATE MODELLING

courtesy : Trenberth et al, 2007,2009

Units: Thousand cubic km for storage, and thousand cubic km/yr for exchanges

National Centre for Atmospheric Science

PARALLEL IMPLEMENTATION

- Regular, Static, Lat-Long
 Decomposition
- Mixed mode MPI/OpenMP
- Asynchronous I/O servers
- Communications on demand for advection
- Multiple halo sizes (up to 8)

Vertical resolution

GLOBAL MODELS

N96	N144	N216	N320	N512	N768	N1024	N2048
(192 x 145)	(288 x 217)	(432 x 325)	(640 x 481)	(1024 x 769)	(536 x 52)	(2048 x 1536)	(4096 x 3073)
~135 km	~90 km	~60 km	~40 km	~25 km	~17 km	~12 km	~6 km

	NWP	Climate
Run length	10 day operational forecast, 15 day ensemble forecast	Months (seasonal) Years, decades, centuries+
Global resolution	Testing: N320 (40 km) with 15 min ts Operational: N768 (17 km) with 7.5 min ts	Low resolution: N96 (135 km) with 20 min ts High resolution: N512 (25 km) with 15 min ts
Dynamics	Non-bit reproducible	Bit-reproducible

NCAS SUPPORTED MACHINES

National Centre for Atmospheric Science

Climate modelling on Cray XC30

ARCHER - Cray XC30, Intel Xeon E5 v2 12C 2.700GHz, Aries interconnect Cray Inc. Cray Performance Analysis Tools

AIMS

- Performance scaling of the UM at different resolutions
- Performance analysis using Cray PAT tools
- Optimisations for MPI
- Cray Reveal for OPENMP

UM JOBS

JOB	COLUMN	ROWS	LAND	VERTICAL	TIME	RESOLUTION
N96	192	144	11271	85	20 min	135 km
N216	432	324	52614	85	15 min	60 km
N512	1024	768	280592	85	10 min	25 km

Number of columns and rows describes the grid of the global model in North-South and East-West (horizontal) direction respectively. Land points refers to the number of simulated land points. Vertical levels describes the vertical grid of atmosphere. Time steps refers to the number of physics timesteps per simulated day. Resolution refers to resolution of the global grid.

PERFORMANCE METRIC

 $M_{year} = \frac{1200}{T_{model}}$

 $M_{\mbox{year}\,\mbox{-}}$ the number of model years simulated per day.

$$T_{model} = T_{wallclock} - T_{initial}$$

Tmodel- time to simulate 5 model daysTwallclock- total wallclock timeTinitial- time to initialise

$$C = \frac{1}{M_{year}} \times n_{core} \times 24$$

C - Cost of simulating a model year in core-hours n_{core} - number of physical cores

MODEL SETUP

Hyper threading or Symmetric Multithreading

Hyper threading slows UM ; SMT achieved ~30% speedup

Bit reproducibility

-e m -s real64 -s integer64 -h O2 -hflex_mp=intolerant -h omp

PERFORMANCE SCALING

Performance scaling of UM job on ARCHER(ARC) and MON- SooN(MON). Cores refers to the actual number of physical cores used and performance is measured as number of model years simulated in a day (Myear). MON PS and ARC PS refers to perfect scaling that can be expected on MONSooN and ARCHER respectively.

PERFORMANCE SCALING

Cost of simulating a model year (C) of the UM job on ARCHER(ARC) and MONSooN(MON) compared to the number of physical cores - ncore (left) and Model years in a day Myear (right).

PERFORMANCE ANALYSIS

National Centre for Atmospheric Science

MPI RANK REORDER

National Centre for Atmospheric Science

Nearest neighbour communications

MPI ranks - PE configuration 24 x 36

0	1	2	3	4		35
36	37	38	39	40		71
72	73	74	75	76		107
				1000	1.1.1.1.1.1.1	2.000
108	109	110	111	112		143
108 	109 	110 		112 		143

12 PEs per node

0	7	8
1	6	9
2	5	10
3	4	11

			 _
36	43	44	
37	42	45	
38	41	46	
39	40	47	

72	79	80	
73	78	81	
74	77	82	
75	76	83	2

146

182

218

254

108	115	116
109	114	117
110	113	118
111	112	119

SMP Rank Order (Nodes 0,4,8,12)

MPI rank 37 (and 75) along with the ranks involved in nearest neighbour communications are highlighted. Rank order is based on using 12 MPI ranks per node on ARCHER.

GRID Rank Order (Nodes 0, 1, 2, 3)

111

75

39

3

112	113	144	145
76	77	180	181
40	41	216	217
4	5	252	253

255	256	257
219	220	221
183	184	185
147	148	149

0	1	2
36	37	38
72	73	74
108	109	110

MPI RANK REORDER

LOAD IMBALANCE

Imbalance percentage of UM jobs : N96 job running on a single node; N512 job running on 73 nodes; N512 job running on 241 nodes; Thread imbalance percentage are relative to the set of threads used. Imbalance percentage of UM functions are relative to set of PEs.

PERFORMANCE SCALING

CRAY REVEAL

Cray Reveal - integrated performance analysis and code optimisation tool.

- provides loop analysis and scoping of serial loops.
- suggests OPENMP directive that can be inserted to a loop.

can attach the performance data collected during execution to identify profile of loops.

- requires knowledge of OPENMP to resolve conflicts and issues.
- works only with Cray compiling environment.
- does not support tasks, barrier, critical or atomic regions.

For more details - refer Cray documentation (not much)

CRAY REVEAL

000				X Reveal								-
<u>-</u> ile <u>E</u> dit <u>V</u> iew <u>H</u> elp	ile Edit View Help											
-About Reveal 🔞 🔽 xjkel.pl 🔇												
Navigation		Source ee/um/x	jlek/umatmos/ppsrc/UM/co	ontrol/top_level/mid	crophys_ctl.f9)						
 Function View 	۵									🛧 Up 😽	Down	ve 🌣
20.07% UM_MAIN		8	47 ! Dry level T va	lues (only red	quilooo			V Reveal O	nenMP Scoping			-7
▶ 7.59% RAD_CTL	=	8/	48			6	eening De		pennin scoping			-
▷ 5.58% EG_CUBIC_LAGRANGE		▶ _ ILS 8	49 DO k = qdims%k	end + 1, tdi	ISCOPE L	oops 5	coping Re	suits				
2.59% LIDAR_SIMULATOR		8	50					microphys_ct	l.f90: Loop@849			
▶ 0.89% NI_CONV_CTL			51 DO i = adims	%i start. ɑdiı	ns% Name	Туре	Scope	Info				
▶ 0.84% ATMOS_PHYSICS2		8	52	-), -,	i	Scalar	Private					
▶ 0.63% MONO_ENFORCE		AT 8	53 D0 i = adir	ms%i start. d	dimei	Scalar	Private					
▶ 0.56% EG_VERT_WEIGHTS_ETA			54		k	Scalar	Drivate					
0.49% NI_IMP_CTL ●		8	55 twork(i	.i.k) = t n(i	i. ODWC	Caslar	Charad		an in a linfa una ati an	a vailable		
► 0.45% BDY_IMPL3		8	56	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Scalar	Shared	FAIL: NO SC	oping information	avallable		
		L 8 ¹	57 END DO		TDIMS	Scalar	Shared	FAIL: No sc	oping information	available		
		8	58		t_n	Array	Shared					
Loop@733		L 85	59 END DO		t_work	Array	Shared					
Loop@739		86	50 .									
		L 8(61 END DO									
Loop@851		86	5 <mark>2</mark>									
Loop@853	00	X Ope	enMP Directive)	-First/Las	st Private			Reduction			
Loop@1263	Directive inse CMD_paralle	erted by Cray Reveal.	May be incomplete.)	🗆 Enab	le FirstPr	ivate		None			
Loop@1303	\$0MP& priv	/ate (i,j,k)	&)	🗆 Enab	le LastPr	ivate		INOTIC			×
Loop@1305 !\$	\$OMP& sha	ired (t_n,t_work,QDI	MS,TDIMS))		_						\leq
Loop@1318)	Find Nar	ne:						
Loop@1320)		irective	Show Dir	activa				
Loop@1330)		recuve	SHOW DI	ecuve				ose /
Loop@1418						<i>.</i>						_
Loop@1420				er	candidate wa	s found a	t line 853.					
Loop@1422												
			Copy Directive	X Close								
home2/n02/n02/karthee/um/xjlek/umatmos	s/tmp/xjkel.pl	loaded										

CRAY REVEAL

National Centre for Atmospheric Science NATURAL ENVIRONMENT RESEARCH COUNCIL

Performance scaling of the UM jobs using increasing number of OpenMP threads on ARCHER/MONSooN. Wallclock time refers to the time taken to complete 2 model days. UM8.6 refers to the original UM code and UMReveal to the code with new OpenMP directives. %Speedup is measured as a relative performance improvement achieved by adding new OpenMP directives.

OPENMP PERFORMANCE

%Speedup of UM functions on MONSooN and ARCHER. %Speedup is measured as the relative improvement achieved by adding OpenMP regions. Performance of UM is measured using 6 MPI and 4 OpenMP threads per node. In X-axis labels, the calltree of the function is specified using ':' delimiter. For example in AS:API, 'Atm Step' calls function 'Atmos Physics 1'.

VECTORISATION

ARCHER compute nodes contain two 2.7 GHz, I2-core E5-2697 v2 (Ivy Bridge)

series processors

- supports AVX Instruction set extensions 256-bit vector SIMD extension
- AVX floating point arithmetic 8x faster compared to scalar
- AVX2 and AVX512 also available

	LOOPS	%
TOTAL LOOPS	70000	100.00
VECTORIZED	9769	13.96
FUSED	6418	9.17
REPLACED WITH LIBRARY CALLS	2207	3.15
PARTIALLY VECTORIZED	2089	2.98
NOTVECTORIZED	49522	70.75

NOT VECTORIZED BECAUSE A BETTER CANDIDATE WAS FOUND	22382	31.97
NOT VECTORIZED BECAUSE OF A POTENTIAL REASSOCIATION ISSUE	10418	14.88
NOT VECTORIZED BECAUSE A RECURRENCE	5762	8.23
NOT VECTORIZED BECAUSE IT CONTAINS A CALL TO SUBROUTINE/ FUNCTION/IRREGULAR EXPRESSION	4876	6.97
NOT VECTORIZED BECAUSE IT DOES NOT MAP WELL ONTO THE TARGET ARCHITECTURE	3482	4.97
WAS NOT VECTORIZED BECAUSE THE TARGET ARRAY (XI) WOULD REQUIRE RANK EXPANSION	371	0.53
NOT VECTORIZED BECAUSE IT CONTAINS A REFERENCE TO A NON- VECTOR INTRINSIC	365	0.52
NOT VECTORIZED BECAUSE THE ITERATION SPACE IS TOO IRREGULAR	408	0.58
NOT VECTORIZED BECAUSE OF UNKNOWN REASON	1458	2.08

Ν		22382	31.97
Ν	not vectorized because of a potential reassociation issue	10418	14.88
Ν	If -h flex_mp=intolerant is specified on the command line, then loops are rejected as vector candidates if they contain floating point or complex	5762	8.23
N Fl	operations which can potentially cause subtle result differences due to optimization variances between the main vector loop body and any left-over remainder iterations.	4876	6.97
N A	DO k=1,qdims%k_end DO j=1,rows DO i=1 row_length	3482	4.97
V R	<pre>qrain_inc_step(i,j,k) = qrain_star(i,j,k) - qrain_n(i,j,k)</pre>	371	0.53
N V	+ fraction_step*qrain_inc_step(i,j,k) END DO ! i END DO ! j	365	0.52
Ν	END DO ! k	408	0.58
N		1458	2.08

Ν	not vectorized because of recurrence	22382	31.97
Ν	Scalar code was generated for the loop because it contains a linear	10418	14.88
N	recurrence. The following loop would cause this message to be issued: DOI = I,I00 $\Delta(I) = \Delta(I-I)$	5762	8.23
N Fl	ENDDO	4876	6.97
N A	DO j = first_row, last_row DO I = row_start_pt, row_end_pt	3482	4.97
V R	iloc = LBC_address(i,j)	371	0.53
	rho_lbc(iloc,k) = p_zero/(R*temp) & & *exner_lbc(iloc,k)**((1.0-kappa)/kappa)	365	0.52
N	exner_lbc(iloc,k+1) = exner_lbc(iloc,k)	408	0.58
N	END DO END DO	1458	2.08

V	not vectorized because it does not mab well to the target architecture	22382	31.97
V	The loop contains too many operations that have no clean vector equivalent in	10418	14.88
7	hardware for the targeted architecture, and has been left to run as a purely scalar loop. Although the loop is vectorizable from a dependency and idiom standpoint, it would be unprofitable to emulate vector execution using scalar	5762	8.23
∨ =נ	operations.	4876	6.97
V	On other architectures with different hardware capabilities, this loop may be cleanly vectorized.	3482	4.97
V^ RI	DO k = I, dim_k_out DO j = I, dim_j_out DO i = L dim_i_out	371	0.53
∖ ∕I	$i_out(i,j,k) = i_out(i,j,k) - datastart(1) + 1$	365	0.52
V	END DO !i = I, dim_i_out * dim_j_out * dim_k_out END DO	408	0.58
V	END DO	1458	2.08

SUMMARY

On Cray XC30, UM performance is characterised by

- 2 OPENMP threads has a load imbalance of 46% that increases as the UM is scaled to higher resolution
- Newly added OPENMP directives result in 5 to 19% speedup
- ~57% of the loops cannot be vectorised by the compiler. Can be improved by not enforcing bit reproducibility
- Message passing does not scale well above 2880 MPI ranks as it consumes more than 50% of the total wallclock time.
- Using a GRID rank reorder results in 5 to 12% speedup.

GUNGHO FOR FUTURE

Copyrights : unknown