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OBJECTIVE

Message passing , Threading and Vectorisation

Message passing has scaling limitations

Single node performance - Threading and Vectorisation

Intel x86, IBM Power, Coprocessors,  Accelerators,  ARM 64 bit

Need for a HPC library that abstracts the architecture 



The UM is a numerical modelling 
system, developed by the UK Met 
Office, and used for operational 
weather forecasting and climate 
prediction. 
It is licensed to the UK academic 
community for research. 
Joint Weather and Climate 
Research Programme (JWCRP), a 
strategic partnership between 
NERC and the Met Office for 
model development.
It is used by forecast centres and 
climate agencies around the world

METOFFICE UNIFIED MODEL



courtesy :  Trenberth et al, 2007,2009CLIMATE MODELLING

have been made to assemble, analyze, derive, and as-
sess global datasets of water vapor (Trenberth et al.
2005), cloud (Dai et al. 1999b, 2006), precipitation
(amount, frequency, intensity, type) (Trenberth 1998;
Dai et al. 1999a; Dai 2001a; Trenberth et al. 2003),
evapotranspiration (evaporation plus transpiration
from plants) (Qian et al. 2006), soil moisture, runoff,
streamflow and river discharge into the oceans (Dai
and Trenberth 2002, 2003), atmospheric moisture flows
and divergence (Trenberth and Guillemot 1998; Dai
and Trenberth 2002; Trenberth and Stepaniak 2003a),
atmospheric moisture storage (Trenberth and Smith
2005), and freshwater flows in the ocean (Dai and Tren-
berth 2003). Related issues are the effects of tempera-
ture and water-holding capacity, relative versus specific
humidity (Dai 2006), covariability of temperature and
precipitation (Trenberth and Shea 2005), recycling of
moisture (which is taken to mean the fraction of pre-
cipitation in a given region, such as a river basin, that

comes from moisture evaporated within that basin as
opposed to advected in from outside the region) (Tren-
berth 1999), combinations of temperature and precipi-
tation such as in the Palmer drought severity index
(PDSI) (Dai et al. 2004), the diurnal cycle (Dai et al.
1999a,b; Dai 2001b; Trenberth et al. 2003), and forcings
of the hydrological cycle, such as solar radiation (Qian
et al. 2006). It is well established that latent heating in
the atmosphere dominates the structural patterns of to-
tal diabatic heating (Trenberth and Stepaniak 2003a,b)
and thus there is a close relationship between the water
and energy cycles in the atmosphere.

Water vapor is the dominant greenhouse gas (Kiehl
and Trenberth 1997) and is responsible for the domi-
nant feedback in the climate system (Karl and Tren-
berth 2003). However, it also provides the main re-
source for clouds and storms to produce precipitation,
and most precipitation comes from moisture already in
the atmosphere at the time a storm forms (Trenberth

FIG. 1. The hydrological cycle. Estimates of the main water reservoirs, given in plain font in 103 km3, and the flow of moisture
through the system, given in slant font (103 km3 yr!1), equivalent to Eg (1018 g) yr!1.
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PARALLEL IMPLEMENTATION
Regular, Static, Lat-Long 
Decomposition
Mixed mode MPI/OpenMP
Asynchronous I/O servers
Communications on demand for 
advection
Multiple halo sizes (up to 8)

© Crown copyright   Met Office

Parallel Implementation

• Regular, Static, Lat-Long 
Decomposition

• Mixed mode MPI/OpenMP

• Asynchronous I/O servers

• Communications on 
demand for advection

• Multiple halo sizes

Horizontal resolution Vertical resolution

Land surface



GLOBAL MODELS

N96 N144 N216 N320 N512 N768 N1024 N2048

(192 x 145) (288 x 217) (432 x 325)  (640 x 481) (1024 x 769)  (1536 x 1152) (2048 x 1536) (4096 x 3073) 

~135 km ~90 km ~60 km ~40 km ~25 km ~17 km ~12 km ~6 km

NWP Climate

Run length 10 day operational forecast, 
15 day ensemble forecast

Months (seasonal) 
Years, decades, centuries+

Global 
resolution

Testing:  
N320 (40 km) with 15 min ts 

Operational:  
N768 (17 km) with 7.5 min ts

Low resolution:  
N96 (135 km) with 20 min ts 

High resolution:  
N512 (25 km) with 15 min ts

Dynamics Non-bit reproducible Bit-reproducible



NCAS SUPPORTED MACHINES
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ARCHER - Cray XC30, Intel Xeon E5 v2 12C 2.700GHz, 
Aries interconnect Cray Inc.

Cray Performance Analysis Tools

AIMS
Performance scaling of the UM at different resolutions
Performance analysis using Cray PAT tools 
Optimisations for MPI
Cray Reveal for OPENMP

Climate modelling on Cray XC30

http://www.top500.org/system/178188


UM JOBS

JOB 
NAME

COLUMN
S

ROWS LAND 
POINTS

VERTICAL 
LEVELS

TIME 
STEPS

RESOLUTION

N96 192 144 11271 85 20 min 135 km
N216 432 324 52614 85 15 min 60 km
N512 1024 768 280592 85 10 min 25 km

Number of columns and rows describes the grid of the global model in North-South and East-West 
(horizontal) direction respectively. 

Land points refers to the number of simulated land points. 
Vertical levels describes the vertical grid of atmosphere. 

Time steps refers to the number of physics timesteps per simulated day. 
Resolution refers to resolution of the global grid. 



PERFORMANCE METRIC
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TABLE 2
Standard UM jobs at different resolution. Number of columns and rows describes the grid of the global model in North-South and East-West

(horizontal) direction respectively. Land points refers to the number of simulated land points. Vertical levels describes the vertical grid of
atmosphere. Timesteps refers to the number of physics timesteps per simulated day. Resolution refers to resolution of the global grid.

Jobname Columns Rows Land Points Vertical
levels

Timesteps Resolution

N96 192 144 11271 85 20 min 130 km

N216 432 324 52614 85 15 min 60 km

N512 1024 768 280592 85 10 min 25 km

to HECTOR. For UPSCALE, the UM was optimized for

high resolution modelling. This project is considered to be

a quantum leap for climate science. In this paper, we study

how the optimizations discussed in the UPSCALE project

can be improved further for a Cray XC30 machine.

In this study, we use the IBM Power 775 machine as

a baseline for comparison. For MONSooN ,we assume that

UM jobs are fully optimized by the MetOffice. For ARCHER,

optimizations discussed in the UPSCALE project are applied

by default unless stated otherwise. These jobs are used as a

baseline for further performance analysis. Table 2 lists three

resolutions of UM operational models namely N96, N216

and N512 [13]. We assume that the UM standard jobs will

be used for performance analysis unless otherwise stated.

2 PERFORMANCE MEASUREMENT

In measuring the performance of UM models, we will use

the number of model years simulated per day (M
year

) as a

metric.

M

year

=
1200

T

model

(1)

where T

model

is the time taken for modelling 5 model days.

In this paper, a model year is assumed to be 360 days

long and T

model

is measured from the total wallclock time

(T
wallclock

in seconds) and the initial setup time ( T
initial

in

seconds) of a 5 model day run.

T

model

= T

wallclock

� T

initial

(2)

For global climate modelling, M
year

is the most useful

metric and will be compared against the number of physical

cores (n
core

used. The cost of simulating (core-hours) a

model year (C) can be evaluated as follows

C =
1

M

year

⇥ n

core

⇥ 24 (3)

In this paper, C will be scaled by 1/1000 for ease of repre-

sentation and 1 C will represent 1000 core-hours.

2.1 Performance tuning parameters

For MPI parallelism, we can set the number of processes

in the East-West (longitude) and North-South directions

(latitude). This will decide the grid spacing of the latitude-

longitude grid. The UM uses iterative solvers to solve

Helmhotz equation and each iteration requires halos to

be communicated between the MPI processes. The inter-

polation order used in semi-lagrangian advection and the

maximum win speed allowed in E-W direction determines

the size of the halo. The UM uses extended halo size of up

to 8 and this restricts the maximum number of processes in

any direction.

We can do an exhaustive search to find the optimal

processor decomposition that can be used. This is very

expensive and on the Cray XC30 we find that the peak

performance of high resolution jobs has weak dependence

on the decomposition. In further studies, we try to use a de-

composition that is proportional to the number of columns

and rows of a job (as listed in table 2).
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longitude grid. The UM uses iterative solvers to solve
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be communicated between the MPI processes. The inter-
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the size of the halo. The UM uses extended halo size of up
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any direction.
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expensive and on the Cray XC30 we find that the peak

performance of high resolution jobs has weak dependence

on the decomposition. In further studies, we try to use a de-

composition that is proportional to the number of columns

and rows of a job (as listed in table 2).

Myear - the number of model years simulated 
per day. 

Tmodel     - time to simulate 5 model days 
Twallclock  - total wallclock time
Tinitial      - time to initialise 

C - Cost of simulating a model year in 
core-hours 
ncore - number of physical cores



MODEL SETUP

-e m -s real64 -s integer64 -h O2  -hflex_mp=intolerant  -h ompBit reproducibility

MONSooN ARCHER

N96 N216 N512

IO ServerMPIOPENMP

HPC

UM jobs

Job setupSMT/HT

Hyper threading slows UM ; 
SMT achieved ~30% speedupHyper threading or Symmetric Multithreading



PERFORMANCE SCALING

N512N216N96

Performance scaling of UM job on ARCHER(ARC) and MON- SooN(MON). Cores refers to the actual number of 
physical cores used and performance is measured as number of model years simulated in a day (Myear). MON PS 

and ARC PS refers to perfect scaling that can be expected on MONSooN and ARCHER respectively. 

12 MPI tasks x 2 
OPENMP threads



PERFORMANCE SCALING
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PERFORMANCE ANALYSIS
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code and ETC includes all 

other library calls. 



MPI RANK REORDER

0 1 2 3 4 … 35
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111 112 119

SMP Rank Order (Nodes 0,4,8,12) 

 MPI ranks - PE configuration 24 x 36

MPI rank 37 (and 75) along with the ranks involved in nearest 
neighbour communications are highlighted. Rank order is based on 

using 12 MPI ranks per node on ARCHER. 

Nearest neighbour 
communications
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111 112 113

75 76 77

39 40 41

3 4 5

144 145 146

180 181 182

216 217 218
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GRID Rank Order (Nodes 0,1,2,3)

12 PEs per node



MPI RANK REORDER
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of UM functions are relative to set of PEs. 

MPI on thread 0 only



PERFORMANCE SCALING
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Cray Reveal - integrated performance analysis and code optimisation tool.

provides loop analysis and scoping of serial loops.

suggests OPENMP directive that can be inserted to a loop.

can attach the performance data collected during execution to identify profile of 

loops.

requires knowledge of OPENMP to resolve conflicts and issues.

works only with Cray compiling environment.

does not support tasks, barrier, critical or atomic regions.

For more details - refer Cray documentation ( not much )

CRAY REVEAL
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CRAY REVEAL
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Wallclock time refers to the time taken to complete 2 model days. UM8.6 refers to the original UM code and 

UMReveal to the code with new OpenMP directives. %Speedup is measured as a relative performance 
improvement achieved by adding new OpenMP directives. 

2389 serial loops 
parallelised Testing : Bit reproducibility 



OPENMP PERFORMANCE
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VECTORISATION

ARCHER compute nodes contain two 2.7 GHz, 12-core E5-2697 v2 (Ivy Bridge) 

series processors

supports AVX Instruction set extensions - 256-bit vector SIMD extension

AVX floating point arithmetic 8x faster compared to scalar

AVX2 and AVX512 also available



VECTORISATION IN UM

LOOPS %

TOTAL LOOPS 70000 100.00

VECTORIZED 9769 13.96

FUSED 6418 9.17

REPLACED WITH LIBRARY CALLS 2207 3.15

PARTIALLY VECTORIZED 2089 2.98

NOT VECTORIZED 49522 70.75



VECTORISATION IN UM

NOT VECTORIZED BECAUSE A BETTER CANDIDATE WAS FOUND 22382 31.97

NOT VECTORIZED BECAUSE OF A POTENTIAL REASSOCIATION ISSUE 10418 14.88

NOT VECTORIZED BECAUSE A RECURRENCE 5762 8.23

NOT VECTORIZED BECAUSE IT CONTAINS A CALL TO SUBROUTINE/
FUNCTION/IRREGULAR EXPRESSION 4876 6.97

NOT VECTORIZED BECAUSE IT DOES NOT MAP WELL ONTO THE TARGET 
ARCHITECTURE 3482 4.97

 WAS NOT VECTORIZED BECAUSE THE TARGET ARRAY (X1) WOULD 
REQUIRE RANK EXPANSION 371 0.53

NOT VECTORIZED BECAUSE IT CONTAINS A REFERENCE TO A NON-
VECTOR INTRINSIC 365 0.52

NOT VECTORIZED BECAUSE THE ITERATION SPACE IS TOO IRREGULAR 408 0.58

NOT VECTORIZED BECAUSE OF UNKNOWN REASON 1458 2.08
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not vectorized because of a potential reassociation issue

If -h flex_mp=intolerant is specified on the command line, then loops are
rejected as vector candidates if they contain floating point or complex
operations which can potentially cause subtle result differences due to
optimization variances between the main vector loop body and any left-over
remainder iterations.
  DO k=1,qdims%k_end
       DO j=1,rows
            DO i=1,row_length
                 qrain_inc_step(i,j,k)   = qrain_star(i,j,k)   - qrain_n(i,j,k)
                 qrain_conv(i,j,k)   = qrain_n(i,j,k)                        &
                               + fraction_step*qrain_inc_step(i,j,k)
            END DO ! i
       END DO ! j
  END DO ! k
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not vectorized because of recurrence

Scalar code was generated for the loop because it contains a linear
recurrence.  The following loop would cause this message to be issued:
        DO I = 1,100
          A(I) = A(I-1)
       ENDDO

    DO j = first_row, last_row
        DO I = row_start_pt, row_end_pt
        
          iloc = LBC_address(i,j)

          rho_lbc(iloc,k) = p_zero/(R*temp)                    &
                             *exner_lbc(iloc,k)**((1.0-kappa)/kappa)

          exner_lbc(iloc,k+1) = exner_lbc(iloc,k)

          END DO
    END DO



VECTORISATION IN UM

NOT VECTORIZED BECAUSE A BETTER CANDIDATE WAS FOUND 22382 31.97

NOT VECTORIZED BECAUSE OF A POTENTIAL REASSOCIATION ISSUE 10418 14.88

NOT VECTORIZED BECAUSE A RECURRENCE 5762 8.23

NOT VECTORIZED BECAUSE IT CONTAINS A CALL TO SUBROUTINE/
FUNCTION/IRREGULAR EXPRESSION 4876 6.97

NOT VECTORIZED BECAUSE IT DOES NOT MAP WELL ONTO THE TARGET 
ARCHITECTURE 3482 4.97

 WAS NOT VECTORIZED BECAUSE THE TARGET ARRAY (X1) WOULD 
REQUIRE RANK EXPANSION 371 0.53

NOT VECTORIZED BECAUSE IT CONTAINS A REFERENCE TO A NON-
VECTOR INTRINSIC 365 0.52

NOT VECTORIZED BECAUSE THE ITERATION SPACE IS TOO IRREGULAR 408 0.58

NOT VECTORIZED BECAUSE OF UNKNOWN REASON 1458 2.08

not vectorized because it does not map well to the target architecture

The loop contains too many operations that have no clean vector equivalent in
hardware for the targeted architecture, and has been left to run as a purely
scalar loop.  Although the loop is vectorizable from a dependency and idiom
standpoint, it would be unprofitable to emulate vector execution using scalar
operations.

On other architectures with different hardware capabilities, this loop may be
cleanly vectorized.
  

DO k = 1, dim_k_out
     DO j = 1, dim_j_out
        DO i = 1, dim_i_out

             i_out(i,j,k) = i_out(i,j,k) - datastart(1) + 1

        END DO  ! i = 1, dim_i_out * dim_j_out * dim_k_out
     END DO
  END DO



SUMMARY

On Cray XC30 , UM performance is characterised by 

2 OPENMP threads has a load imbalance of 46% that increases as the UM is scaled 
to higher resolution

Newly added OPENMP directives result in 5 to 19% speedup 

~57% of the loops cannot be vectorised by the compiler. Can be improved by not 
enforcing bit reproducibility

Message passing does not scale well above 2880 MPI ranks as it consumes more 
than 50% of the total wallclock time.

Using a GRID rank reorder results in 5 to 12% speedup.
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