
Karl Fürlinger
Lehrstuhl für Kommunikationssysteme und
Systemprogrammierung
LMU München

Exploiting Hierarchical Exascale
Hardware using a PGAS Approach

DASH: Data Structures and Algorithms with
Support for Hierarchical Locality

Exascale Applications and Software Conference (EASC), April 22 2015| 2K. Fürlinger - DASH

DASH – Overview

 DASH is a data-structure oriented C++ template library
that realizes the PGAS (Partitioned Global Address Space)
model
dash::Array<int> a(1000);

a[23]=412;
cout<<a[42]<<endl;

– Array a can be stored in the
memory of several nodes

– a[i] transparently refers to local
memory or to remote memory via
operator overloading

 Not a new language to learn
– Can be integrated with existing

(MPI) applications

 Support for hierarchical locality
– Team hierarchies and locality

iterators

Node

e.g., STL vector,
array

Node

DASH array

Exascale Applications and Software Conference (EASC), April 22 2015| 3K. Fürlinger - DASH

Hierarchy in Machines

 Machines are getting increasingly hierarchical
– Both within nodes and between nodes

– Data locality is the most crucial factor for performance and
energy efficiency

Source: Bhatele et al.: Avoiding hot-spots in two-level direct networks. SC 2011.Source: LRZ SuperMUC system description. Source: Steve Keckler et al.: Echelon System Sketch

Hierarchical locality not well supported by current
approaches. PGAS languages usually only offer a two-
level differentiation (local vs. remote).

Hierarchical locality not well supported by current
approaches. PGAS languages usually only offer a two-
level differentiation (local vs. remote).

Exascale Applications and Software Conference (EASC), April 22 2015| 4K. Fürlinger - DASH

DASH – Overview and Project Partners

 Funded under the DFG priority
programme “Software for Exascale
Computing” (SPPEXA)

 Project Partners
– LMU Munich (K. Fürlinger)

– HLRS Stuttgart (J. Gracia)

– TU Dresden (A. Knüpfer)

– KIT Karlsruhe (J. Tao)

– CEODE Beijing (L. Wang, associated)

Component of DASH

DASH Runtime

DASH C++ Template Library

DASH Application To
o

ls an
d

 In
te

rfa
ce

s

Hardware: Network, Processor,
Memory, Storage

One-sided Communication
Substrate

MPI GASnet GASPIARMCI

Existing component/
Software

Exascale Applications and Software Conference (EASC), April 22 2015| 5K. Fürlinger - DASH

DART: The DASH Runtime Interface

 The DART API
– Plain-C based interface

– Follows the SPMD execution model

– Defines Units and Teams

– Defines a global memory abstraction

– Provides a global pointer

– Defines one-sided access operations
(puts and gets)

– Provides collective and pair-wise
synchronization mechanisms

DASH Runtime (DART)

DASH C++ Template Library

DASH Application

To
o

ls an
d

 In
te

rfa
ce

s

Hardware: Network, Processor,
Memory, Storage

One-sided Communication
Substrate

MPI GASnet GASPIARMCI

DART API

Exascale Applications and Software Conference (EASC), April 22 2015| 6K. Fürlinger - DASH

Three DART Implementations

 DART-MPI
– Uses MPI-3 RMA

– Scalable runtime

 DART-SYSV shared-memory based
implementation

– For shared-memory nodes only

– Proof of concept & testing of DASH

 DART-CUDA extends DART-SYSV with
support for accelerators

– Research vehicle for the next iteration of
the DART interface (execution model)

DART-
SYSV

DASH C++ Library

SYS-V CUDA
Shared Memory /

Accelerators

DART-
MPI

MPI-3
RMA

DART API

DART-
CUDA

Exascale Applications and Software Conference (EASC), April 22 2015| 7K. Fürlinger - DASH

Units and Teams

 Units:
– Individual participants in a DART/DASH program

– Corresponds to thread/process/image in other PGAS appr.

 Team:
– Ordered set of units

– Subteams as subsets of a parent team

– Local uniqueness guarantees

DART_TEAM_ALL
{0,…,7}

Node 1 {0,…,3} Node 1 {4,…,7}

{0,1} {2,3} {4,5} {6,7}

ID=2

ID=0

ID=1

ID=2 ID=3 ID=3 ID=4

Exascale Applications and Software Conference (EASC), April 22 2015| 8K. Fürlinger - DASH

Memory Allocation and Access

 Symmetric and team-aligned allocation
– The same memory is allocated at each unit and each member of the team

can easily compute the address of any location in any unit’s part of the
allocation

 Local global allocation
– Globally accessible, no alignment guarantees, tied to DART_TEAM_ALL

Symmetric and
team-aligned
allocation

Local global
allocation

Unit 0 Unit 1 Unit 2 Unit n-1

Team 1

Private
Memory

Global
Memory

Global
Pointer

DART_TEAM_ALL

Global
Pointer

Exascale Applications and Software Conference (EASC), April 22 2015| 9K. Fürlinger - DASH

Memory Access

 Communication: One-sided puts and gets
– Blocking and non-blocking versions

Performance of
blocking puts and gets
closely matches MPI
performance

Exascale Applications and Software Conference (EASC), April 22 2015| 10K. Fürlinger - DASH

New: Shared Memory Communicators

64x64 Grid 1024x1024 Grid

 5-point Stencil Example (Cray XC40, HLRS Hornet)

Shared memory communicator
greatly improves performance – up to
and beyond UPC and OpenSHMEM
levels.

Exascale Applications and Software Conference (EASC), April 22 2015| 11K. Fürlinger - DASH

DASH (C++ Template Library)

 1D array as the basic data type

 DASH follows a global-
view approach, but local-
view programming is
supported as well

 Standard algorithms can
be used but may not yield
best performance

 lbegin(), lend() allow
iteration over local
elements only

Exascale Applications and Software Conference (EASC), April 22 2015| 12K. Fürlinger - DASH

Data Distribution Patterns

 A Pattern controls the mapping of an index space onto units

 No datatype is specified
for a pattern, no mem.
allocation is performed

 A team can be specified
explicitly

 Patterns guarantee a
similar mapping for
different containers

 Patterns can be used to
specify parallel execution

Exascale Applications and Software Conference (EASC), April 22 2015| 13K. Fürlinger - DASH

Global and Local Element Access

 Subscripting and .at
member function

 Local and global
iterators

 Range-based for
(global and local data
via .local proxy
object)

Exascale Applications and Software Conference (EASC), April 22 2015| 14K. Fürlinger - DASH

Machine-Tree, Team-Tree

 Machine Tree represents the hardware
– Induces a team tree of units

System

Islands

Cores

Nodes

u3u2u1
u4 u5

DART_TEAM_ALL

T1={1,2,3} T2={4,5}

T3 T4 T5

Induced
Team Tree

Team Hierarchy for u2

u3u2u1 u4 u5

…

…

…

Exascale Applications and Software Conference (EASC), April 22 2015| 15K. Fürlinger - DASH

Hierarchical Iterators

Iteration
Space Units

Hierarchy
Levels

u3

u2

u1

u4

u5

Pattern Team-Hierarchy

u3

u2

u1

u4

u5

Hierarchical Views and Iterators

“n
ode”

“is
land”

“g
lo

bal”

“lo
ca

l”

Exascale Applications and Software Conference (EASC), April 22 2015| 16K. Fürlinger - DASH

Hierarchical Views and Iterators

2 3 4 5 610 70Unit:

0
1
2

3
4
5

6
7
8

9
10
11

12
13
14

15
16
17

18
19
20

21
22
23

Data:

9
10
11

9
10
11

6
7
8

0
1
2

3
4
5

6
7
8

9
10
11

t0

t1

t2

Exascale Applications and Software Conference (EASC), April 22 2015| 17K. Fürlinger - DASH

Ongoing: N-Dimensional Pattern and Matrix

(BLOCKED, NONE) (NONE, BLOCKED) (NONE, BLOCKCYCLIC(2))

(BLOCKED, NONE, NONE)
(BLOCKED, BLOCKCYCLIC(3)) (BLOCKCYCLIC(4), BLOCKCYCLIC(4))

Exascale Applications and Software Conference (EASC), April 22 2015| 18K. Fürlinger - DASH

Tools & Interfaces and Applications

 Applications
– Molecular Dynamics App (Stuttgart)

– Remote Sensing App (CEODE)

 Tools and Interfaces
– Performance and debugging tools interface

– Parallel I/O to and from the data structures

– Ongoing: debugger ingetration

 Both areas are on-going work and the
focus of the second half of the project

Exascale Applications and Software Conference (EASC), April 22 2015| 19K. Fürlinger - DASH

Status

 DART: Final v1.0 spec
– Available online: http://www.dash-project.org/dart/

– DART can be the foundation for other PGAS approaches

– Next iteration: execution model

 DASH
– DART-MPI + DASH release in the works (array and matrix)

– Next iteration: dynamic data structures

Thank you for your
attention!

Thank you for your
attention!

