Exploring Emerging Technologies in the Extreme Scale HPC Co-Design Space with **Holistic Performance Modeling**

Jeffrey S. Vetter Jeremy Meredith

Presented to Exascale Applications and Software Conference (EASC)

EPCC/University of Edinburgh

22 Apr 2015

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

ORNL is managed by UT-Battelle for the US Department of Energy

1										
				1				1	200	UI
Part of the second			+++++		-	N	LIST****	X		E
	& FL		ULIEN	PEGIO	NS	0.11	PE UI to Islands	~	1900	
	Alse T	- Lowia	whish i	C - Campt	had	H-I		w	HISKI	
	WHISKI	V - India		Town IR - Irish B - Blend	-	1-h	ilay J - Japanese New Zealand W - Weish	BAR.	RESTAURAN	
L	PAR. · RESTAURANT	- Speys	lide	B - Bieno	-	110	MALTS ***	Age	ABV	£
ITC	MALTS ***	22/1	Age A	ABV E		16	00	12	43.0% 43.0%	£5.50 £8.50
H			12 4	0.0% E3.9	0		Caol Ila 18 YO Caol Ila Cask Strength	18 NL	59.0%	£8.80 £7.50
8	Aberlour 10 YO			0.0% £3.9			Caol Ila Distillers Eduon	NL	43.0% 43.0%	£5.80
8	Aberiour 12 YO Aberiour 15 YO		16 43	1.0% £6.5	0		Caol IIa Moch	NL	59.6% 43.0%	£8.50 £22.00
5	Abertour 18 YO Abertour a'bunadh (CS)		NL 60	1.0% £9.9 1.2% £5.9	0		Caol Ila 25 YO	25	40.0%	£4.00
IN	Amrut Sherry		NL 57	1% £6.2 0% £4.5	0	5	Ot welleh 14 VO	14 NL	46.0% 46.0%	£4.90 £6.50
H	Ancnoc 12 YO Ancnoc 16 YO		16 46	.0% £7.8	0	H	Clynelish Dist Ed Oloroso	NL	46.0%	£5.50 £5.50
1	Ardbeg 10 YO Ardbeg Auriverdes		NL 49	0% £5.5 9% £9.9	0	S	Gragganmore 12 YO	12 NL	40.0%	£7.50
1	Ardbeg Corryvreckan		10 57	1% £8.90 2% £7.90		S	Cragganmore Dist Ed Cu Dhub Black	NL	40.0%	£5.90 £5.50
H	Ardbeg Uigedail Ardmore Traditional Cask		NL 46.	0% £6.50)	H	Dalmore 12 YO	12 15	40.0%	£6.90
H	Ardmore 1993		16 40. NL 57.	0% £5.50 0% £4.50		H	Dalmore 18 YO	18 NL	43.0% 40.0%	£12.00 £15.00
15 15	Arran 100% Proof Arran 10 YO		10 43.	0% £4.20		H	Dalmore Alexander III Dalmore Cigar Malt	NL	44.0%	£8.90 £45.00
IS IS	Arran 14 YO Arran Cask Strength		14 46.1 12 54.1	1% £6.50		н	Dalmore 25 YO Dalwhinnle 15 YO	25	42.0% 43.0%	£5.50
L	Auchentoshan Classic Auchentoshan 12 YO		VL 40.0			H	Datwhinnie Disillers Edition	NL	43.0% 46.3%	£6.90 £4.90
-2+	Auchentoshan 18 YO	1	18 43.0	1% £8.80		H	Deanston 12 YO Edradour 10 YO	12	40.0%	£5.50
L	Auchentoshan 3 Wood Auchriosk 10 YO		IL 43.0 0 43.0			H	Edradour Port Finish	13 NL	55.7% 42.0%	£6.90 £5.50
H	Balblair 1966	1	/ 43.0	% £21.00		H	Fettercaim Flor Glen Burgie 10 YO	10	40.0%	£3.90
	Baiblair 1975 Balblair 1990	11	8 43.0	% £11.00		S	Glen Elgin 12 YO	12	43.0%	£4.90 £3.90
HI	Balblair 2003	10	43.0	% £6.50		H	Glen Deveron 12 YO Glen Garioch Founders Res.	NL	48.0%	£4.90
SE	Balmenach (CC) Balvenie Doublewood 12 YC	12	40.09	% £5.50		H	Glen Garioch 12 YO	12	48.0%	£5.40 £4.50
SIB	lalvenie Signature	12				S	Glen Grant 10 YO Glen Grant 16 YO	16	43.0%	£6.50
S B	laivenie Single Barrel alvenie Rum Cask	14	43.0%	6 £5.90		. 8	Glen Mhor 1980	27	43.0%	£7.90 £4.90
SB	alvenie Doublewood 17 YO	17	43.0%			S C	Glen Moray 16 YO Glen Scotia 10 YO	10	46.0%	£4.50
S B	alvenie 30 YO anff 1976 (CC)	34	40.0%	£10.90		C	Glen Scotia 18 YO	18	46.0%	£7.50 £4.90
HB	en Nevis 10 YO	10	46.0%	£3.90 £4.00		CC	Glen Scotia 12 YO Glen Scotia Cask Strength	15	59.9%	£5.80
Be	enriach 12 YO enriach Peated 10 YO	10	40.0%	£4.00		S	Glen Spey 12 YO	12	43.0%	£4.90 £4.00
Be	nriach Dark Rum Finish	15	46.0%			H	Glencadam 10 YO Glencadam Oloroso	14	46.0%	£5.50
Be	nriach Tawny Port Finish nriach Soistice	17	50.0%	£6.50		H	Glencadam 15 YO Glendullan 12 YO	15	40.0%	£5.40 £6.00
Re	nriach Bernie Moss	NL 10	48.0%	£3.80 £4.20		SH	Glendronach 12 YO	12	40.0%	£4.90
Ber	nromach 10 YO nromach Organic	NL	43.0%	£5.50		н	Glendronach 15 YO	15	46.0%	£5.90 £8.50
Ben	aromach Peat Smoke	NL	46.0%	£4.60 £5.40		H	Glendronach 18 YO Glendronach 21 YO	21	48.0%	£12.00
	romach Origins r Athol 12 YO	12	43.0%	£5.90		H	Glendronach Cask Strength	NL 10	54.8% 40.0%	£7.50 £4.90
Blah	r Athol 1997 (CC)	15	43.0%	£4.90 £5.90		S	Glenfarclas 10 YO Glenfarclas 15 YO	10	40.0%	£5.90
	more Tempest more Original	10	40.0%	£5.50		S	Glenfarclas 105 (CS)	10	60.0% 43.0%	£5.90 £9.00
Bow	more 18 YO	18	43.0%	£9.50 £7.90		S	Glenfarclas 21 YO Glenfiddich 12 YO	12	40.0%	£4.90
	more Darkest more 25 YO	15 25	40.0%	£35.00		S	Glenfiddich 18 YO	18	40.0%	£12.00
Bruik	chiaddich Scottish Barley	NL	50.0%	£5.50	1	S	Glenfiddich Rum 21 YO Glenfiddich 30 YO	21	40.0%	£15.00 £29.00
Bruk	chladdich Port Charlotte	NL 5	50.0% 57.0%	£8.50 £11.00		S	Glenfiddich Solera 15 YO	15	40.0%	£6.00
Bruic	hladdich Octomore 6.1 hladdich Peat	NL	46.0%	£4.90		S	Glenfiddich Rich Oak	14 NL	40.0%	£6.50 £4.60
Bruic	hladdich RedderStill	22	50.4%	£20.00 £5.90		H	Glenglassaugh Revival Glengoyne 10 YO	10	40.0%	£4.90
	hiaddich islay Barley ahabhain 12 YO	NL 12	50.0%	£5.90 £4.90		H	Glengoyne Cask Strength	NL	58.7%	£6.50
Bunna	ahabhain 18 YO	18	46.3%	£8.50	L	H	Glengoyne 15 YO	15 18	43.0% 43.0%	£6.50 £9.50
	ahabhain 25 YO	25	43.0%	£27.00		H	Glengoyne 18 YO Glenkeith (CC)	18	45.0%	£9.50 £5.20

									1000	16 States	-	
14 11										4		IN
	*****							X.		E		
V L-Low	VHISKY	C - Camp			PE O		IS-Islands	-6	1ps			
WHISKI IN - India		Town IR - Irish		1-10	lay		J - Japanese	WF	ISK	1 I		
1 5 - Spey	side	B - Blen	d	NZ-	New 2	Lealand	W - Wetsh				-	
LOC MALTS *** L Glenkinchie 12 YO		BV	1	L		Uncalla	n Sherry 18 YO	Acad 18	43.0%	1 69	50	
L Glenkinchle Distillers Edition L Glenkinchle 20 YO (CS)	NL 43	.0% E	5.50 6.50		SI	Macalla		14	43.0%	5 24	70	
S Glenlivet 12 YO S Glenlivet 18 YO	12 40).0% £	14.00		B	Mackin	lays Shackleton chmore 12 YO	NL 12	47.39	6 E14	00	
S Glenlivet Nadurra Cask (CS)	16 5	7.7% §	16.50 16.90		S	Milton	Duff 10YO ch 15 YO	10	40.0	16 EA	20	
H Glenmorangie Nectar D'Or	15 4	6.0%	£4.90 £6.50		5	Mortia	ch 21 YO	21 NL	43.0	1% E	9.50	
H Glenmorangie Lasanta H Glenmorangie Quinta Ruban		6.0% 8.0%	£5.90 £6.50		S NZ	NZ.D	ch Rare and Old unedin Doublewoo		40.0	1% 1	7.00	10.1
H Glenmorangie 18 YO H Glenmorangie Signet	18 4	3.0%	£9.90 £14.90		H	Oban	14 YO Distillers Edition	NI	. 43	0% 1	E7.50	
H Glenmorangie 25 YO S Glenrothes Reserve	25 4		£30.00 £4.90	-	H	Old F	Pulteney 12 YO Pulteney Cask Stren	13 igth 1	5 60	5%	£6.50	
S Glentauchers 1991 H Glenturret	15	40.0%	£3.90 £3.90		H	Old F	Pultney 17 YO Pulteney 21 YO	2	1 48	0%	£6.80 £12.00	
C Hazelburn	8	46.0%	£6.50		W	Pend	ieryn ert Burns 12 YO			3.0%	£4.00 £3.90	+
IS Highland Park 18 YO	18	40.0% 43.0%	£4.90 £12.00		H	Roy	al Brackla 1995		16 4	6.0%	£4.50 £4.90	-
IS Highland Park 21 YO IS Highland Park 25 YO	21 25	47.5% 48.1%	£16.00		H	Roy	al Lochnagar 12 YC al Lochnagar Dist		NL	10.0%	£5.80 £6.50	7
IS Highland Park 30 YO IS Highland Park Cask Strengt	30 h 11	48.1% 58.2%	£45.0		15	Sca	pa 16 YO pa 25 YO		25	40.0% 54.0%	£25.50	5
IS Highland Park Dark Origins S Imperial	NL 16	46.8% 43.0%	£7.50		5		gleton of Dufftown okehead		12 NL	43.0%	£4.90 £4.80	0
S Inchgower	14	43.0%	£5.0	0	1	Sm	okehead 18 YO eyburn 10 YO		18	46.0%	£9.9 £3.9	
B Johnnie Walker Blue Label IS Jura 10 YO	NL 10	40.0% 40.0%	£18.0 £4.9	0	S	Sp	ringbank 10 YO		10 15	46.0%		
IS Jura 16 YO IS Jura Elixir	16	40.0%	£5.9		C	S	oringbank 15 YO oringbank 18 YO		18	46.0%	6 £8.	90
IS Jura Superstition IS Jura Prophecy	NL	45.0%	£5.9		0		bringbank Calvado trathisla 12 YO	8	12	52.79	% E4	90
IS Jura 200 th Anniversary	21	44.0%		.90		SS	trathisla 1957 trathmill 12 YO		50	43.0		5.00
IS Jura Tastival I Kilchoman Machir Bay	NL NL	44.0% 46.0%	£5.	50		ST	alisker 10 YO		10	45.8		5.50 8.90
I Kilchoman 100% Islay I Kilchoman 2007	NL 6	50.0%		.50		IS 1	alisker 18 YO fallsker Distillers E	Edition	12	45.	3% E	6.50
C Kilkerran	NL 12	46.0%		.50			Talisker 57 North Talisker Storm		NL		8% 1	7.50
S Knockando I Lagavulin Cask Strength	12	56.49	6 £8	3.90		IS	Talisker Port Ruig Talisker 30 YO	he	NI 30	45		25.00
I Lagavulin 16 YO I Lagavulin Distillers Edition	16 on NL	43.09	% £1	3.50 8.50		S	Tamdhu 8 YO		8	43	1.0%	£4.00
I Laphroaig 10 YO I Laphroaig 18 YO	10			4.90		S	Tamdhu 10 YO Tamdhu 1962			L 4	3.0%	£4.50 £25.00
I Laphroaig Quarter Cask	15	48.0	% £	5.90		S	Teananich 10 YO				3.0%	£4.90 £4.90
I Laphrolag Triple Wood IS Ledaig 10 YO	NI 10		3% 1	26.90 24.00		HIS	Teaninich (CC) Tobermory			10	16.3%	£4.50
S Linkwood 15 YO	1			£4.60		IS S	Tobermory 15 Yo Tomatin 12 YO	0	-+		46.3% 40.0%	£8.50 £3.80
S Longmorn 16YO	1	6 48.	0%	£5.90		S	Tomatin 18 YO	he Tanal	-	18 NL	46.0%	£5.50 £4.50
C Longrow C Longrow 18 YO			0%	£5.60		S S	Tomintoul 'Peat Tormore (CC)			NL	43.0%	£4.20
C Longrow Red Port Cask		11 51	.8%	£6.50		SH	Tormore 12 YO Tullibardine 19			12	40.0%	
S Macalian Gold S Macalian Amber		NL 40	.0%	£7.5	0	IR	Tyrconnell			NL	40.0%	£3.80
S Macallan Sienna			3.0%	£9.9		7	Yamazaki 12 Y Yoichi 10 YO	0		12	43.09	
S Macallan Ruby S Macallan 2003			0.0%	£5.5						-	-	
						-				1		

• Vol 2:

ARCHER in new book

- EPCC ARCHER
- NERSC
- NREL
- NCAR
- -ZIB
- RIKEN
- KTH Royal Institute of Technology

Chapman & Hall/CRC Computational Science Series

Contemporary High Performance Computing From Petascale toward Exascale VOLUME TWO

Edited by Jeffrey S. Vetter

National Laborator

Overview

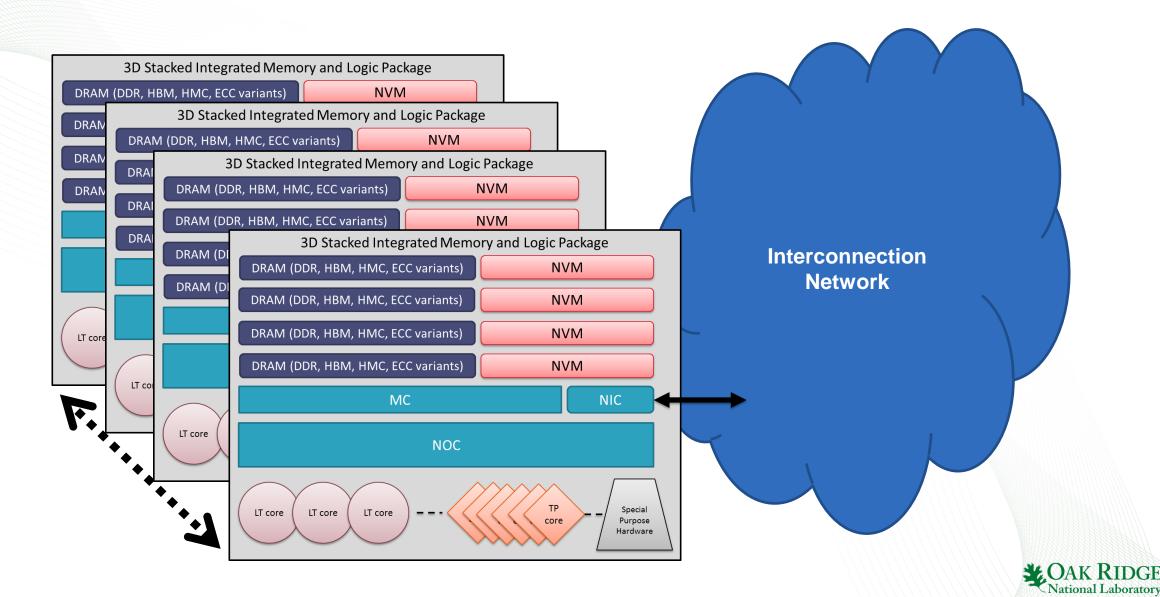
- Our community has major challenges in HPC as we move to extreme scale
 - Power, Performance, Resilience, Productivity
 - Major shifts in architectures, software, applications
 - Not just HPC: Most uncertainty in two decades
- New technologies emerging to address some of these challenges
 - Heterogeneous computing
 - Nonvolatile memory
- Consequently, we now have critical situations in
 - Portable programming models
 - Performance prediction for procurement, optimization, etc
- Aspen is a tool we have developed for performance prediction <u>*OAK</u>

Surveying the HPC Landscape: Today and Tomorrow

Sauda marca de parte de an

. to Alaber dis . 11

Notional Exascale Architecture Targets (From Exascale Arch Report 2009)

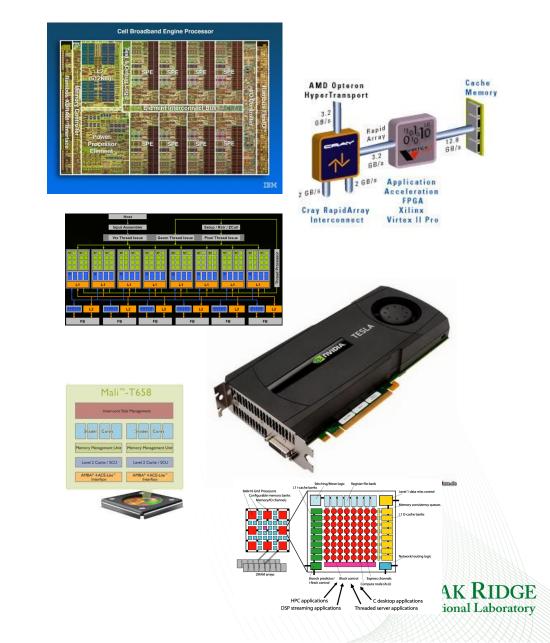

System attributes	2001	2010	"2	015"	"2018"		
System peak	10 Tera	2 Peta	200 Pe	taflop/sec	1 Exaflop/sec		
Power	~0.8 MW	6 MW	15	MW	20 MW		
System memory	0.006 PB	0.3 PB	5	РВ	32-64 PB		
Node performance	0.024 TF	0.125 TF	0.5 TF	7 TF	1 TF	10 TF	
Node memory BW		25 GB/s	0.1 TB/sec	1 TB/sec	0.4 TB/sec	4 TB/sec	
Node concurrency	16	12	O(100)	O(1,000)	O(1,000)	O(10,000)	
System size (nodes)	416	18,700	50,000	5,000	1,000,000	100,000	
Total Node Interconnect BW		1.5 GB/s	150 GB/sec	1 TB/sec	250 GB/sec	2 TB/sec	
МТТІ		day	O(*	l day)	O(1 day)		

Parallel I/O ??

CAK RIDGE

http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/

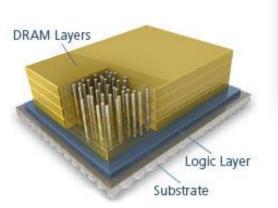
Notional Future Architecture

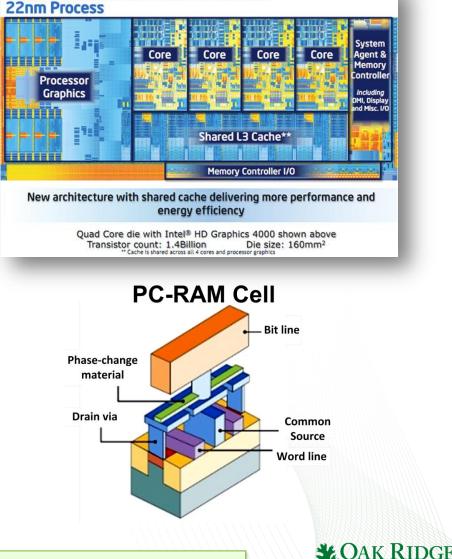


Earlier Experimental Computing Systems

~2004

^oopular architectures since


- The past decade has started the trend away from traditional 'simple' architectures
- Mainly driven by facilities costs and successful (sometimes heroic) application examples
- Examples
 - Cell, GPUs, FPGAs, SoCs, etc
- Many open questions
 - Understand technology challenges
 - Evaluate and prepare applications
 - Recognize, prepare, enhance programming models



Emerging Computing Architectures – Future

Heterogeneous processing

- Latency tolerant cores
- Throughput cores
- Special purpose hardware (e.g., AES, MPEG, RND)
- Fused, configurable memory
- Memory
 - 2.5D and 3D Stacking
 - HMC, HBM, WIDEIO2, LPDDR4, etc
 - New devices (PCRAM, ReRAM)
- Interconnects
 - Collective offload
 - Scalable topologies
- Storage
 - Active storage
 - Non-traditional storage architectures (key-value stores)
- Improving performance and programmability in face of increasing complexity
 - Power, resilience

National Laboratory

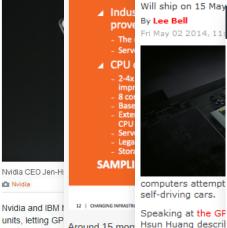
3rd Generation Intel[®] Core[™] Processor:

HPC (mobile, enterprise, embedded) computer design is more fluid now than in the past two decades.

Recent announcements

Nvidia and IBM create GPU interconnect for faster supercomputing

"NVLink" shares up to 80GB of data per second between CPUs and GPUs


by Jon Brodkin - M It Begins: AMD Announces Its First ARM Based Server SoC, 64-bit/8-core Opteron All00

by Anand Lal Shimpi on January 28, 2014 6:35 PM EST

Posted in CPUs IT Computing Enterprise enterprise CPUs AMD Opteron Opteron A1100 ARM

"SEATTLE" 64 DIT ADM CEDVED DROCESCOD

FIRST 28NM AR Nvidia Jetson TK1 mini supercomputer is up for pre-order

Around 15 mon The fatter pipe can run, but at a sl compared to 16 2014. Less than

A1100: a 64-bit	With a total perform
	Raspberry Pi board
The Opteron A1	in the US - a numb
	launched at CES in
talking about ha	"The Jetson TK1 als
away entirely, b	comes with a whole
bets going on. E	it could be classifyi
process at Glob	it could be classify
process at Glob	Parameters are loa

recognises objects,

PRESS RELEASE

MarketWatch

Altera and IBM Unveil **FPGA-accelerated POWER** Systems with Coherent Shared Memory

123

+ Add Com

oller

Aa 📅

Published: Nov 17, 2014 8:00 a.m. ET

fi 8 🔰 in 13 🖇 📨 🗭

POWER8 Systems that Leverage Reprogrammable FPGA Accelerators Gain Significant Improvements in System Performance, Efficiency and Flexibility

NEW ORLEANS, Nov. 17, 2014 /PRNewswire/ -- SuperComputing 2014 -- Altera Corporation ALTR, +0.00% and IBM IBM, +0.00% today unveiled the industry's first FPGA-based acceleration platform that coherently connects an FPGA to a POWER8 CPU leveraging IBM's Coherent Accelerator Processor Interface (CAPI). The reconfigurable hardware accelerator features shared virtual memory between the FPGA and processor which significantly improves system performance, efficiency and flexibility in high-performance computing (HPC) and data center applications. Altera and IBM are presenting several POWER8 systems that are coherently accelerated using FPGAs at SuperComputing 2014.

Intel's 14nm Broadwell GPU takes shape, indicates major improvements over Haswell

By Sebastian Anthony on November 5, 2013 at 10:21 am | 16 Comments

(intel) inside

seriously as a means of accelerating applications and has crafted a hybrid chip that marries an FPGA to a Xeon E5 processor and puts them in the same processor socket

RIDGE

National Laboratory

Nvidia

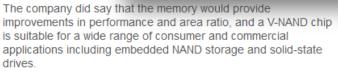
NVRAM Technology Continues to Improve – Driven by Market Forces

designlines MEMORY

News & Analysis 3D NAND Production Starts at Samsung

NO RATINGS

1 saves


Peter Clarke 8/6/2013 08:05 AM EDT 16 comments

Like 17 Tweet

LONDON — Samsung production of a 128 G multiple layers, and cli

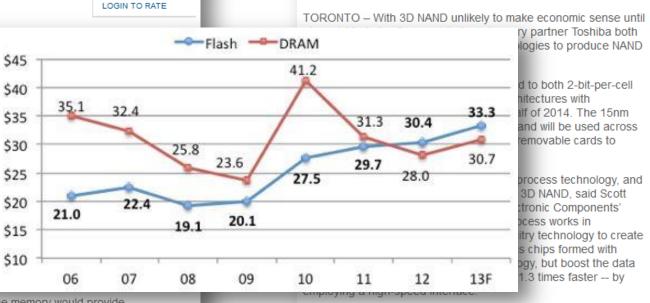
The memory is based conventional floating (In the vertical arrange reliability between a fa conventional floating-(in a press release.

The technology is cap did not disclose how n vertical NAND, nor whe whether it had relaxed in 2D memory, which s

The V-NAND component has the same memory capacity as a 128

6		1
Concessor.	1	1
1.0.1	-	

designlines MEMORY I


News & Analysis 3D NAND Transition: 15nm Process Technology Takes Shape

Gary Hilson	
5/13/2014 08:15 AM EDT	
5 comments	

NO RATINGS LOGIN TO RATE

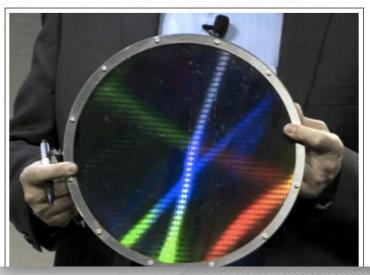
in Share < 6 8+1 < 1

Like 15 Tweet 6

Nelson said there is room to advance floating gates before moving

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_20 12DEC28_STOR_MFG_NT_01.jpg

Original URL: http://www.theregister.


HP 100TB Memristor drives Universal memory slow in com By Chris Mellor

Posted in Storage, 1st November 2013 02:28 GMT

Blocks and Files HP has warned *El Reg* not to get its hopes up too high after the tech titan's CTO Martin Fink suggested StoreServ arrays could be packed with 100TB Memristor drives come 2018.

In five years, according to Fink, DRAM and NAND scaling will hit a wall, limiting the maximum capacity of the technologies: process shrinks will come to a shuddering halt when the memories' reliability drops off a cliff as a side effect of reducing the size of electronics on the silicon dies.

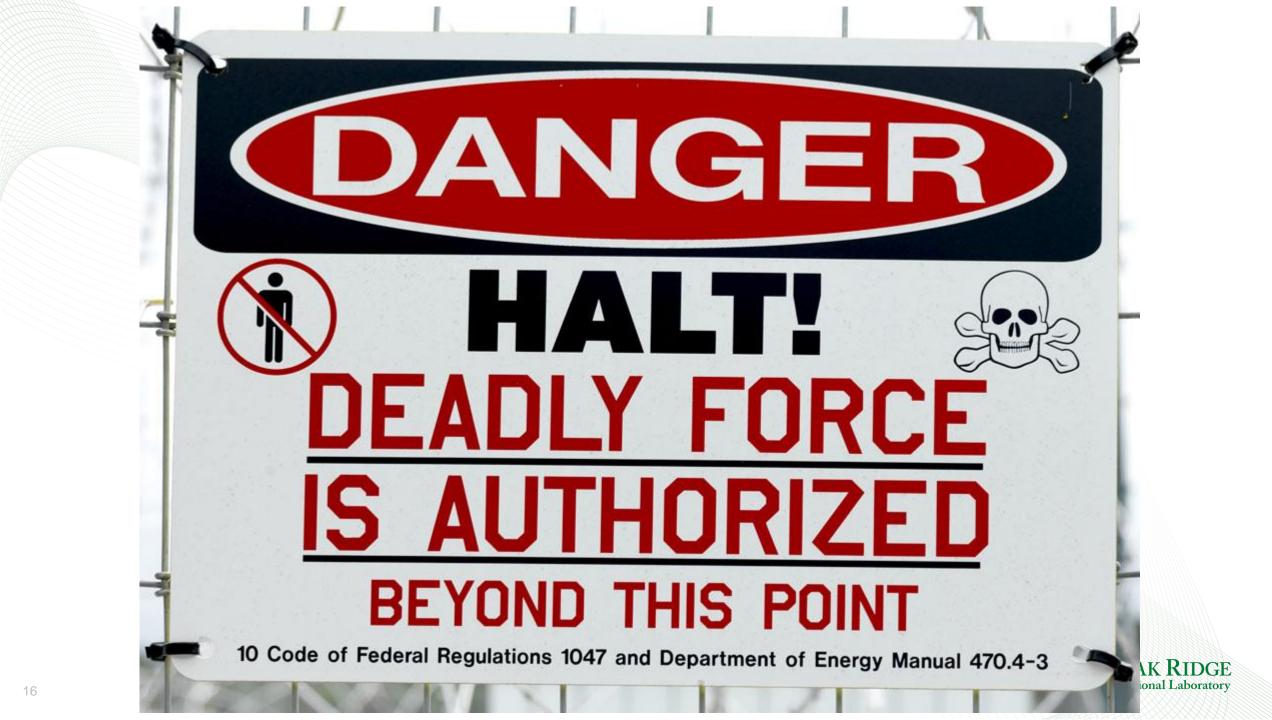
The HP answer to this scaling wall is Memristor, its flavour of resistive RAM technology that is supposed to have DRAM-like speed and better-than-NAND storage density. Fink claimed at an HP Discover event in Las Vegas that Memristor devices will be ready by the time flash NAND hits its limit in five years. He also showed off a Memristor wafer, adding that it could have a 1.5PB capacity by the end of the decade.

Comparison of emerging memory technologies

	SRAM	DRAM	eDRAM	2D NAND Flash	3D NAND Flash	PCRAM	STTRAM	2D ReRAM	3D ReRAM
Data Retention	N	Ν	N	Y	Y	Y	Y	Y	Y
Cell Size (F ²)	50-200	4-6	19-26	2-5	<1	4-10	8-40	4	<1
Minimum F demonstrated (nm)	14	25	22	16	64	20	28	27	24
Read Time (ns)	< 1	30	5	104	104	10-50	3-10	10-50	10-50
Write Time (ns)	< 1	50	5	10 ⁵	105	100-300	3-10	10-50	10-50
Number of Rewrites	1016	1016	1016	10 ⁴ -10 ⁵	10 ⁴ -10 ⁵	10 ⁸ -10 ¹⁰	1015	10 ⁸ -10 ¹²	10 ⁸ -10 ¹²
Read Power	Low	Low	Low	High	High	Low	Medium	Medium	Medium
Write Power	Low	Low	Low	High	High	High	Medium	Medium	Medium
Power (other than R/W)	Leakage	Refresh	Refresh	None	None	None	None	Sneak	Sneak
Maturity									

Thinking back to 2009 projections, where is DOE in 2015?

System attributes	Toda	ay	CORAL				
Name	TITAN	MIRA	Summit	Aurora			
System peak (PF)	27	10	150	180			
Peak Power (MW)	9	4.8	10	13			
Total system memory	710TB	768TB	2 PB DDR4 + HBM + 2.7 PB persistent memory	>7 PB High Bandwidth On-Package Memory, local Memory and Persistent Memory			
Node performance (TF)	1.452	0.204	> 40	> 17 times Mira			
Node processors	AMD Opteron Nvidia Kepler	64-bit PowerPC A2	Multiple IBM Power9 CPUs & multiple Nvidia Voltas GPUS	Intel Xeon Phi processors (codenamed Knights Hill)			
System size (nodes)	18,688 nodes	49,152	>3,400 nodes	>50,000 nodes			
System Interconnect	Gemini	5D Torus	Dual Rail EDR-IB	2nd generation Intel Omni-Path Architecture			
File System	32 PB 1 TB/s, Lustre®	26 PB 300 GB/s GPFS™	120 PB 1 TB/s GPFS™	150 PB >1 TB/s Lustre [®]			


Some ratios will be challenging to mitigate

System attributes	2001	2010	2014	"2015	. <i>"</i> "	est 2018	Ratio of Summit to Titan	"2018	8"
Name	Seaborg3	Jaguar	Titan			SUMMIT			
System peak	10 Tera	2 Peta	27	200		136	5.04	1 Exaflop/sec	
Power (MW)	0.8	6	9	15		10	1.11	20	
Node main memory (GB)			38			512	13.47		
System memory (PB)	0.006	0.3	0.7106	5		1.7408	2.45	32-6	64
Node Persistent Memory (GB)						800			
System Persistent Memory (PB)						2.72	8		
Node performance (TF)	0.024	0.125	1.4	0.5	7	40	28.57	1	10
Node memory BW		25 GB/s		0.1 TB/sec	1 TB/sec			0.4 TB/sec	4 TB/sec
Node concurrency	16	12		O(100)	O(1,000)	*POWER9s + *VOLTAs		O(1,000)	O(10,000)
System size (nodes)	416	18700	18700	50000	5000	3400	0.18	1000000	100000
Total Node Interconnect BW		1.5 GB/s		150 GB/sec	1 TB/sec			250 GB/sec	2 TB/sec
injection bandwidth per node (GB/s)			6.4			23	3.59		
File system capacity (PB)			32			120	3.75		
File system bandwidth (TB/s)			1			1	1.00		
MTTI		day		O(1 day)				O(1 day)	

Observations about these trends

Aside from all the interesting technical questions for computer scientists...

Observations about these trends (2)

- 1. For the success of HPC, we need to be very careful at this point
- 2. Complexity is everyone's enemy!

- 3. Performance portable programming models should be mandatory on all current and future architectures
 - 1. Increasingly, apps teams are spending time porting to new architectures rather than doing science
- 4. Performance prediction techniques and tools are critical
 - Previously, a poor (procurement, optimization, facility) decision could cost 30%; now it could be 10x!
- 5. And then there is power consumption, reliability, etc

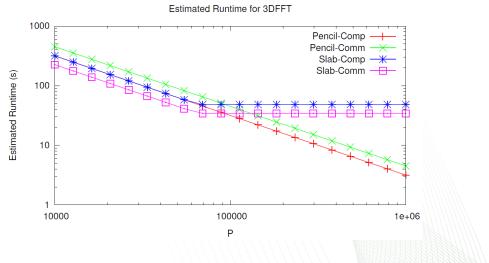
Holistic Performance Modeling for Extreme-Scale HPC

Prediction Techniques Ranked

	Speed	Ease	Flexibility	Accuracy	Scalability	_
Ad-hoc Analytical Models	1	3	2	4	1	-
Structured Analytical Models	1	2	1	4	1	
Simulation – Functional	3	2	2	3	3	
Simulation – Cycle Accurate	4	2	2	2	4	
Hardware Emulation (FPGA)	3	3	3	2	3	
Similar hardware measurement	2	1	4	2	2	
Node Prototype	2	1	4	1	4	
Prototype at Scale	2	1	4	1	2	
Final System	-	-	-	-	-	

Prediction Techniques Ranked

	Speed	Ease	Flexibility	Accuracy	Scalability
Ad-hoc Analytical Models	1	3	2	4	1
Structured Analytical Models	1	2	1	4	1
Aspen	1	1	1	4	1
Simulation – Functional	3	2	2	3	3
Simulation – Cycle Accurate	4	2	2	2	4
Hardware Emulation (FPGA)	3	3	3	2	3
Similar hardware measurement	2	1	4	2	2
Node Prototype	2	1	4	1	4
Prototype at Scale	2	1	4	1	2
Final System	-	-	-	-	-
2					



Aspen – Design Goals

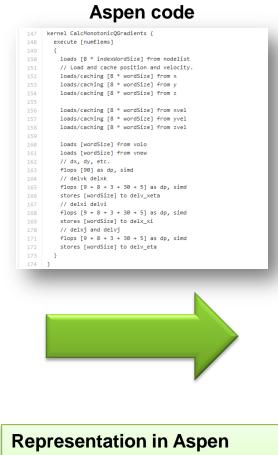
Abstract Scalable Performance Engineering Notation

- Create a deployable, extensible, and highly semantic representation for analytical performance models
- Design and implement a new language for analytical performance modeling
- Use the language to create machine-independent models for important applications and kernels
- Models are composable

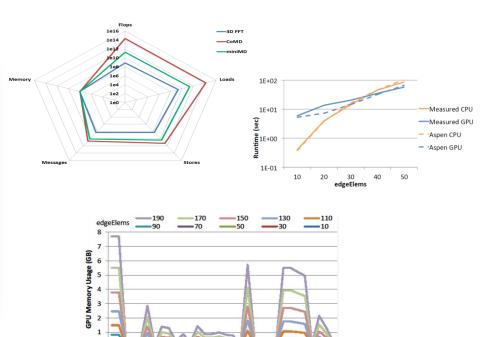
Listing 2. Aspen statements for the local 1D FFTs

K. Spafford and J.S. Vetter, "Aspen: A Domain Specific Language for Performance Modeling," in SC12: ACM/IEEE International Conference for High Performance Computing, Networking, Storage, and Analysis, 2012

22


Aspen Design Flow

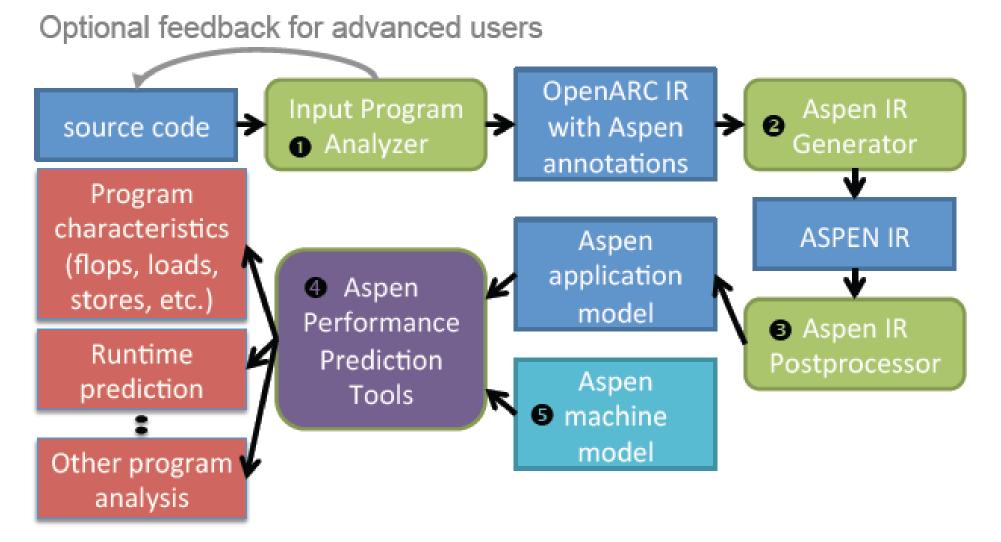
Source code


2324	static inline
2325	<pre>void CalcMonotonicQGradientsForElems(Index t p nodelist[T NUMELEM8],</pre>
2326	Real t p x[T_NUMNODE], Real t p y[T_NUMNODE], Real t p_z[T_NUMNODE],
2327	Real t p xd[T NUMNODE], Real t p yd[T NUMNODE], Real t p zd[T NUMNODE],
2328	Real t p volo[T NUMELEM], Real t p vnew[T NUMELEM],
2329	Real t p delx zeta[T NUMELEM], Real t p delv zeta[T NUMELEM],
2330	Real t p delx xi [T NUMELEM], Real t p delv xi [T NUMELEM],
2331	Real t p delx eta[T NUMELEM], Real t p delv eta[T NUMELEM])
2332	白 (
2333	Index_t i;
2334	<pre>Index_t numElem = m_numElem;</pre>
2335	<pre>#pragma acc parallel loop independent present(p_vnew, p_nodelist, p_x, p_y, p_z, p_xd,</pre>
2336	p_yd, p_zd, p_volo, p_delx_xi, p_delx_eta, p_delx_zeta, p_delv_xi, p_delv_eta,\
2337	p_delv_zeta)
2338	<pre>for (i = 0 ; i < numElem ; ++i) {</pre>
2339	<pre>const Real_t ptiny = 1.e-36 ;</pre>
2340	Real_t ax,ay,az ;
2341	Real_t dxv,dyv,dzv ;
2342	
2343	<pre>const Index_t *elemToNode = &p_nodelist[8*i];</pre>
2344	<pre>Index_t n0 = elemToNode[0] ;</pre>
2345	<pre>Index_t n1 = elemToNode[1] ;</pre>
2346	<pre>Index_t n2 = elemToNode[2] ;</pre>
2347	<pre>Index_t n3 = elemToNode[3] ;</pre>
2348	<pre>Index_t n4 = elemToNode[4] ;</pre>
2349	<pre>Index_t n5 = elemToNode[5] ;</pre>
2350	<pre>Index_t n6 = elemToNode[6] ;</pre>
2351	<pre>Index_t n7 = elemToNode[7] ;</pre>
2352	
2353	Real_t x0 = p_x[n0] ;

Creation

- Manual for future applications
- Static analysis via compilers
- Historical
- Empirical

- Modular
- Sharable
- Composable
- Reflects prog structure
- Existing models for MD, UHPC CP 1, Lulesh, 3D FFT, CoMD, VPFFT, ...


<u>Use</u>

- Interactive tools for graphs, queries
- Design space optimization
- Drive simulators
- Feedback to runtime systems

K.2Spafford and J.S. Vetter, "Aspen: A Domain Specific Language for Performance Modeling," in SC12: ACM/IEEE International Conference for High Performance Computing, Networking, Storage, and Analysis, 2012

Creating Aspen Models

S. Lee, J.S. Meredith, and J.S. Vetter, "COMPASS: A Framework for Automated Performance Modeling and Prediction," in ACM International Conference on Supercomputing (ICS). Newport Beach, California: ACM, 2015, 10.1145/2751205.2751220.

Simple MM example generated from COMPASS

```
int N = 1024;
 1
     void matmul(float *a, float *b, float *c){ int i, j, k ;
 \mathbf{2}
     \#pragma acc kernels loop gang copyout(a[0:(N*N)]) \
 3
     copyin(b[0:(N*N)],c[0:(N*N)])
 4
      for (i=0; i<N; i++)
 \mathbf{5}
     #pragma acc loop worker
 6
 \overline{7}
        for (j=0; j<N; j++) { float sum = 0.0;
         for (k=0; k<N; k++) {sum+=b[i*N+k]*c[k*N+j];}
         a[i*N+j] = sum; \}
      } //end of i loop
     } //end of matmul()
     int main() {
      int i; float *A = (float*) malloc(N*N*sizeof(float));
      float *B = (float*) malloc(N*N*sizeof(float));
      float *C = (float*) malloc(N*N*sizeof(float));
      for (i = 0; i < N*N; i++)
       \{ A[i] = 0.0F; B[i] = (float) i; C[i] = 1.0F; \}
     #pragma aspen modelregion label(MM)
      matmul(A,B,C);
      free(A); free(B); free(C); return 0;
     } //end of main()
21
```

1	model MM {
2	param floatS = 4; param N = 1024
3	data A as Array((N*N), floatS)
4	data B as Array((N*N), floatS)
5	data C as Array((N*N), floatS)
6	kernel matmul {
7	execute matmul2_intracommIN
8	{ intracomm [floatS*(N*N)] to C as copyin
9	intracomm [floatS*(N*N)] to B as copyin }
10	map matmul2 [N] {
11	map matmul3 [N] {
12	iterate [N] {
13	execute matmul5
14	$\{ \text{ loads [floatS] from B as stride}(1) \}$
15	loads [floatS] from C; flops [2] as sp, simd }
16	} //end of iterate
17	execute matmul6 { stores [floatS] to A as $stride(1)$ }
18	} // end of map matmul3
19	} //end of map matmul2
20	execute matmul2_intracommOUT
21	$\{ intracomm [floatS*(N*N)] to A as copyout \}$
22	} //end of kernel matmul
23	kernel main { matmul() }
24	} //end of model MM

LULESH in Aspen

branch: master aspen / models / lulesh / lulesh.aspen		⊞ 🚯		
jsmeredith on Sep 20, 2013 adding models			14	
1 contributor		14	9	
		15	0	
336 lines (288 sloc) 9.213 kb 🛛 🖉 🧨 📺				
		15	2	
1 //		15		
2 // lulesh.aspen			-	
3 // 4 // An ASPEN application model for the LULESH 1.01 challenge problem. Based			4	
4 // An ASELW appreciation model for the collisin 1.01 charlenge problem. Based 5 // on the CUDA version of the source code found at:		15	5	
6 // https://computation.llnl.gov/casc/ShockHydro/			6	
7 //		15	7	
<pre>8 param nTimeSteps = 1495</pre>		15	8	
9		15	0	
10 // Information about domain		16		
11 param edgeElems = 45			-	
12 param edgeNodes = edgeElems + 1 13		16	1	
14 param numElems = edgeElems^3		16	2	
15 param numNodes = edgeNodes^3			3	
16		16	4	
17 // Double precision			5	
18 param wordSize = 8				
19		16		
20 // Element data			7	
21 data mNodeList as Array(numElems, wordSize) 22 data mMatElemList as Array(numElems, wordSize)			8	
22 data mMatElemList as Array(numElems, wordSize) 23 data mNodeList as Array(8 * numElems, wordSize) // 8 nodes per element			9	
24 data mixim as Array(numElems, wordSize)			0	
25 data mlxip as Array(numElems, wordSize)			1	
26 data mletam as Array(numElems, wordSize)				
27 data mletap as Array(numElems, wordSize)			2	
28 data mzetam as Array(numElems, wordSize)			3	
29 data mzetap as Array(numElems, wordSize)			4 }	
30 data melemBC as Array(numElems, wordSize) 31 data mE as Array(numElems, wordSize)				
31 data mE as Array(numElems, wordSize) 32 data mP as Array(numElems, wordSize)				

LULESH – runtime optimizations

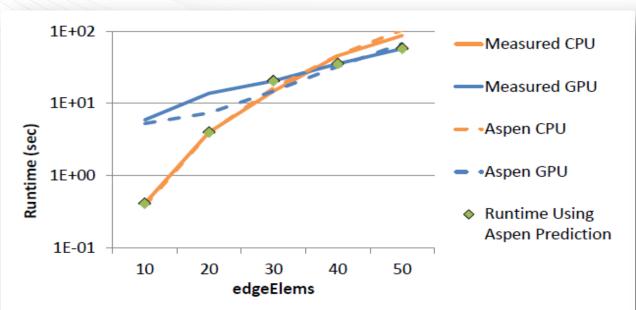
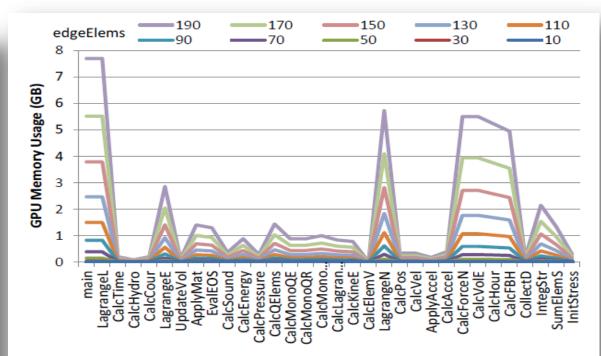
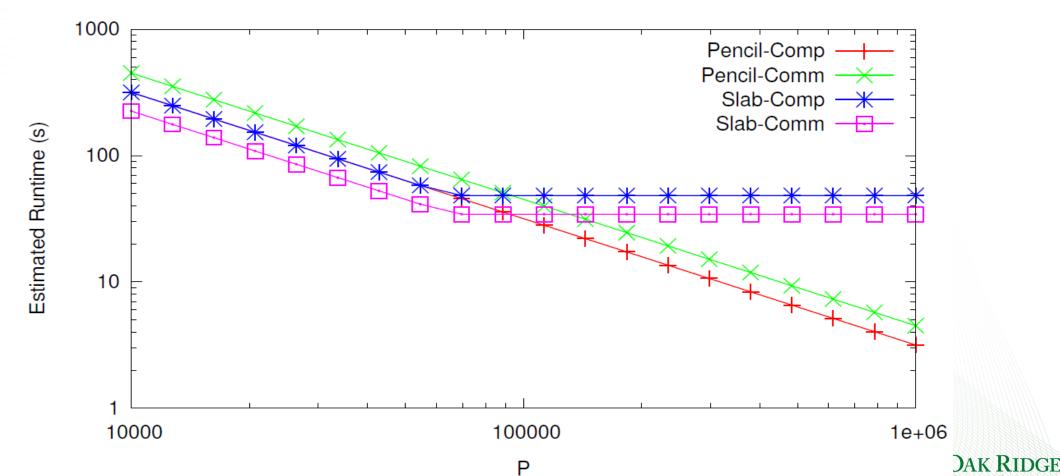


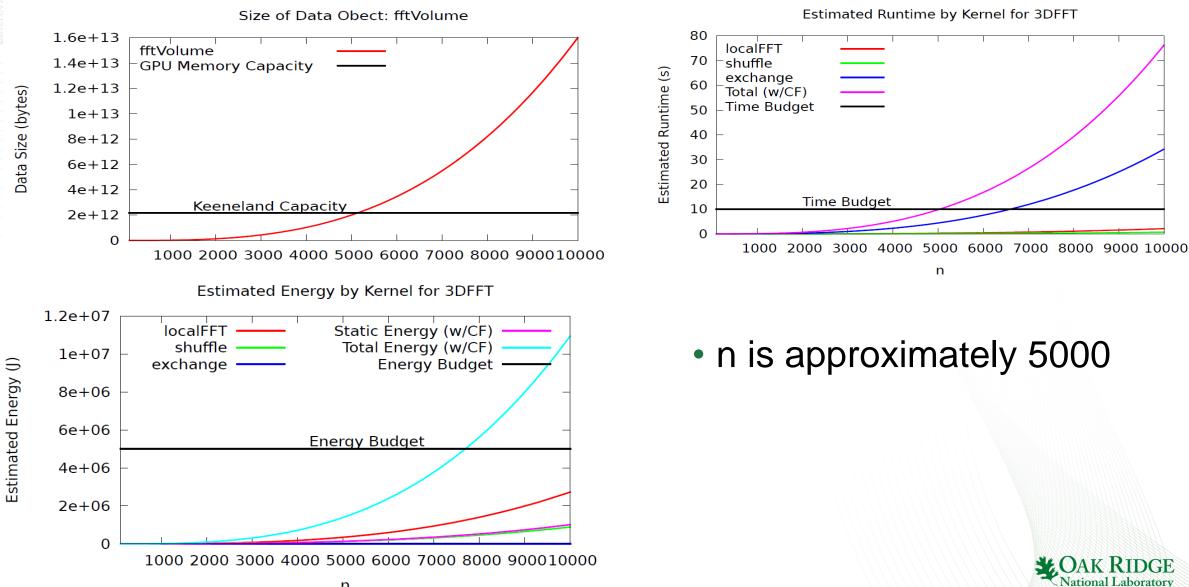
Fig. 7: Measured and predicted runtime of the entire LULESH program on CPU and GPU, including measured runtimes using the automatically predicted optimal target device at each size.

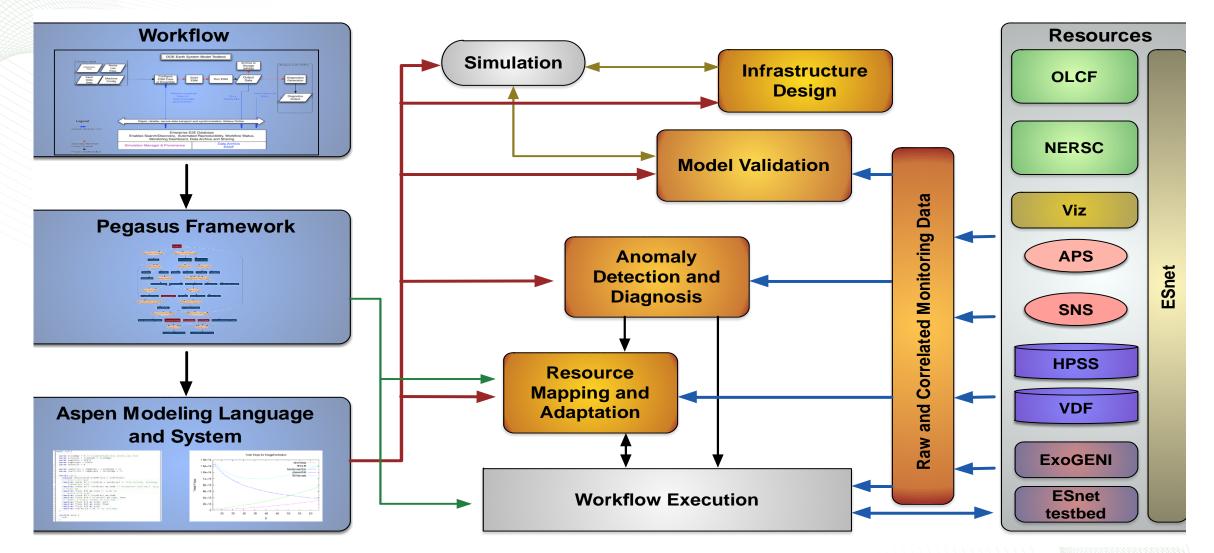



Fig. 8: GPU Memory Usage of each Function in LULESH, where the memory usage of a function is inclusive; value for a parent function includes data accessed by its child functions in the call graph.

3DFFT	<pre>// Dimension of cubic 3D Volume param n = 8192 param a = 6.3 param wordSize = 16 // Double Complex Words param dataPerProc = (n^3 * wordSize) / P data fftVolume [n^3 * wordSize]</pre>
<pre>control pencil { localFFT -> transpose exchange localFFT -> transpose exchange localFFT -> transpose }</pre>	<pre>// in Y localFFT -> transpose // in X // in Y localFFT -> transpose // in Y exchange</pre>
<pre>kernel localFFT { exposes parallelism [n^ requires flops [5 * n * requires loads [a * (n* from fftVolume }</pre>	
<pre>kernel exchange { exposes parallelism [H requires messages [(n' allToAll }</pre>	P] ^3 * wordSize) / P] as

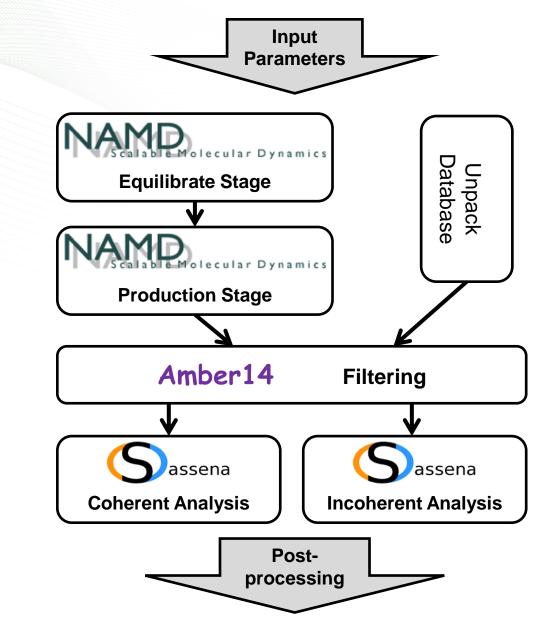
3DFFT: Slab vs. Pencil Tradeoff Ideal Parallelism


Insights become obvious with Aspen


Jational Laboratory

Estimated Runtime for 3DFFT

Design Space Exploration


PANORAMA Overview

E. Deelman, C. Carothers et al., "PANORAMA: An Approach to Performance Modeling and Diagnosis of Extreme Scale Workflows," International Journal of High Performance Computing Applications, (to appear), 2015,

Spallation Neutron Source Workflow


```
kernel main
{
   par {
      seq {
         call namd_eq_200()
         call namd_prod_200()
      seq {
         call namd_eq_290()
         call amd_prod_290()
      call unpack_database()
   }
   par
           amber_ptraj_200()
      call
           amber_ptraj_290()
      call
   par
      call sassena_coh_200()
      call sassena_coh_290()
      call sassena_inc_200()
      call sassena_inc_290()
   }
                         🕊 OAK RIDGE
                          National Laboratory
}
```

Summary

- Our community has major challenges in HPC as we move to extreme scale
 - Power, Performance, Resilience, Productivity
 - Major shifts in architectures, software, applications
 - Not just HPC: Most uncertainty in two decades
- New technologies emerging to address some of these challenges
 - Heterogeneous computing
 - Nonvolatile memory
- Consequently, we now have critical situations in
 - Portable programming models
 - Performance prediction for procurement, optimization, etc
- Aspen is a tool we have developed for performance prediction <u>*OAK</u>

Acknowledgements

- Contributors and Sponsors
 - Future Technologies Group: http://ft.ornl.gov
 - US Department of Energy Office of Science
 - DOE Vancouver Project: <u>https://ft.ornl.gov/trac/vancouver</u>
 - DOE Blackcomb Project: <u>https://ft.ornl.gov/trac/blackcomb</u>
 - DOE ExMatEx Codesign Center: <u>http://codesign.lanl.gov</u>
 - DOE Cesar Codesign Center: <u>http://cesar.mcs.anl.gov/</u>
 - DOE Exascale Efforts: <u>http://science.energy.gov/ascr/research/computer-science/</u>
 - Scalable Heterogeneous Computing Benchmark team: <u>http://bit.ly/shocmarx</u>
 - US National Science Foundation Keeneland Project: <u>http://keeneland.gatech.edu</u>
 - US DARPA
 - NVIDIA CUDA Center of Excellence

