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Overview

« Our community has major challenges in HPC as we move to extreme
scale

— Power, Performance, Resilience, Productivity
— Major shifts in architectures, software, applications

* Not just HPC: Most uncertainty in two decades
* New technologies emerging to address some of these challenges

— Heterogeneous computing
— Nonvolatile memory

« Consequently, we now have critical situations in
— Portable programming models
— Performance prediction for procurement, optimization, etc

* Aspen is a tool we have developed for performance prediction;,,(mKRIDGE

National Laboratory






Notional Exascale Architecture Targets
(From Exascale Arch Report 2009)

System attributes 2001 2010 “2015” “2018”

0.4 TB/sec 4 TB/sec
Node concurrency 12 0O(100) 0O(1,000) 0O(1,000) 0(10,000)

1,000,000 100,000
Total Node 150 GB/sec | 1 TB/sec 250 GB/sec 2 TB/sec
Interconnect BW

Parallel I1/O ?7?

%OAK RIDGE

National Laboratory
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Notional Future Architecture

3D Stacked Integrated Memory and Logic Package
( NVM |

DRAM (DDR, HBM, HMC, ECC variants)

DRAM (DDR, HBM, HMC, ECC variants) [ NVM ]
3D Stacked Integrated Memory and Logic Package

DRAM (DDR, HBM, HMC, ECC variants) [ NVM ]

DRAM (DDR, HBM, HMC, ECC variants) [ NVM W
3D Stacked Integrated Memory and Logic Package

DRAM (DDR, HBM, HMC, ECC variants) [ NVM ]
DRAM (DDR, HBM, HMC, ECC variants) [ NVM ]
T cord DRAM (DDR, HBM, HMC, ECC variants) [ NVM ]
DRAM (DDR, HBM, HMC, ECC variants) [ NVM ]

LT co

Special
Purpose
Hardware

Interconnection
Network

OAK RIDGE
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Earlier Experimental Computing Systems

* The past decade has started the
trend away from traditional
‘'simple’ architectures

« Mainly driven by facilities costs
and successful (sometimes
heroic) application examples

« Examples
— Cell, GPUs, FPGAS, SoCs, etc

- Many open guestions
— Understand technology challenges
— Evaluate and prepare applications

— Recognize, prepare, enhance
programming models

Popular architectures since ~2004

T 2 T T
A\ AK RIDGE
HPC applications / \\ C desktop applications h
DSP streaming applications  Threaded server applications

ional Laboratory



Emerging Computing Architectures - Future

« Heterogeneous processing grzdn?neggggis%n Intel® Core™ Processor:
— Latency tolerant cores  Binir (Y L o S e
— Throughput cores Pl 3 Core | "_ l;;;r roﬁr‘eégn:tg
— Special purpose hardware (e.g., AES, MPEG, RND) | SR Processor S gy B f°""°"9f;
— Fused, configurable memory . et [ TN T T TR 2
- Memory | ] l ! | ég!lr._é;a’;:,;?.;:.““gigi m |
— 2.5D and 3D Stacking T RRLCLaIL B vemory Contoler 0 SRS
— HMC, HBM, WIDEIO2, LPDDRA4, etc DRAM L?YET == New architecture with Sha;::::yc:’fﬂd:‘lel,:::ng more performance and
flewcevices (FERAM, ReRAM) U ot s 2 Gy ot e
- Interconnects R
— Collective offload PC-RAM Cell
— Scalable topologies . " Logic Layer .
- Storage P sttstrate Phase-change
— Active storage mater
— Non-traditional storage architectures (key-value Drain via el
stores) Source
* Improving performance and programmability in T
face of increasing complexity
— Power, resilience
OAK RIDGE

HPC (mobile, enterprise, embedded) computer design is more fluid now than in the past two decades. National Laboratory




Intel’s 14nm Broadwell GPU takes shape,
Recent annou ncements indicates major improvements over Haswell

Sebastian Anthony 16 Comments

Nvidia and IBM create GPU interconnect for l -

faster supercomputing
"NVLink" shares up to 80GB of data per second between CPUs and GPUs

o sonsroain- i L1 BEGINS: AMD Announces Its First ARM Based -
Server SoC, 64-bit/8-core Opteron All100 cmmet N CERIES REDEFINES COMPUTE
by Anand Lal Shimpi on January 28, 2014 6:35 PM EST

osted in CPUs IT Computing Enterprise  enterprise CPUs  AMD  Opteron  Opteron A1100 ARM Ka\feri

“SEATTLE” £# DIT ADRA CEDUED ADAFSCCCAD 4 “Steamroller” CPU Cores Multimedia

FIRST28NM AR Nvidia Jetson TK1 mini supercomputer is up for pre-order N‘:D:’“‘T"““i"
echnology

| Will ship on 15 Ma

uvD
| By Lee Bell = MV Market

. 0ller

VCE
PRESS RELEASE

8 GCN GPU Cores Ahead of its 2014 launch, Intel has

Altera and | BM Unvell C:;:i:::i;v started open-sourcing the Linux
FPGA_acceIerated POWER Sl cens i driver for Broadwell’s GPU. Broadwell

is the 14nm die shrink of Intel’'s

SyStemS W|‘th Coherent Sha red Display - g1 microarchitecture, and while the CPU

DisplayPort 1.2 reddit  side of things isn’t expected to
R change much, Broadwell's GPU looks
- a B 2D e el ke e Af A a1 INNCANANN o 2
Nvidia CEO Jen-H: es (Iris) GPU

Published: Nov 17, 2014 8:00 a.m. ET
0 Nvidia computers attempt

e P self-driving cars. mun

Speaking at the GF

units, letting GP Around 15 mon Hsun Huang descrit

The fatter pipe v can run, but at a =l
compared to 16/ 2014. Less thar '

W A1100: a 64-bit With a total perforr
Raspberry Fi board

in the US - a numb
UE=l0ptaronls launched at CES in  FPGA-based acceleration platform that coherently connects an FPGA to a POWERS

talking about hz CPU leveraging IBM's Coherent Accelerator Processor Interface (CAPI). The

away entirely, b The JEtEfD'-' TKL al: reconfigurable hardware accelerator features shared virtual memory between the
Rk comes with a whole
bets going on. [

] ®
L4 - ’
l n te d that marries an FPGA to a Xeon E5
it could be classifyi FPGA and processor which significantly improves system performance, efficiency and Ins’ e processor and puts them in the same
process at Glob

flexibility in high-performance computing (HPC) and data center applications. Altera
E— Parameters are 0@  and IBM are presenting several POWERS systems that are coherently accelerated

recognises objects, using FPGAs at SuperComputing 2014.
T
Working together through the OpenPOWER Foundation, Altera and IBM are

modified

Intel Mates FPGA With Future Xeon Server
Chip

NEW ORLEANS, Nov. 17, 2014 /PRNewswire/ - SuperComputing 2014 -- Altera

Intel is taking field programmable gate arrays
Corporation ALTR, +0.00% and IBM IBM, +0.00% today unveiled the industry's first

ing AMD's "Kaveri" APU for Hetel seriously as a means of accelerating

applications and has crafted a hybrid chip

processor socket




NVRAM Technology Continues to Improve - Driven by

Market Forces

MEMORY

News & Analysis

3D NAND Production Starts at
Samsung

Peter Clarke WO RATINGS

. 1 saves
8/6/2013 08:05 AM EDT LOGIN TC RATE
16 comments
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The company did say that the memory would provide

improvements in performance and area ratio, and a V-NAND chip

is suitable for a wide range of consumer and commercial

applications including embedded NAND storage and solid-state

drives.
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News & Analysis

3D NAND Transition: 15nm Process
Technology Takes Shape

Gary Hilson

BM3/2014 08:15 AM EDT
5 comments

Em

TOROMNTO — With 3D NAND unlikely to make economic sense until

Melson said there is room to advance floating gates before moving
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Original URL: http://www.theregister.

HP 100TB Memristor drives
Universal memory slow in co
By Chris Mellor

Posted in Storage, 1st November 2013 02:28 GMT

Blocks and Files HP has wamned E/ Reg not to get its hopes up too high after the tech titan's CTO
Martin Fink suggested StoreServ arrays could be packed with 100TB Memristor drives come 2018.

In five years, according to Fink, DRAM and NAND scaling will hit a wall, limiting the maximum capacity
of the technologies: process shrinks will come to a shuddering halt when the memories’ reliability drops
off a cliff as a side effect of reducing the size of electronics on the silicon dies.

The HP answer to this scaling wall is Memristor, its flavour of resistive RAM technology that is supposed
to have DRAM-like speed and better-than-NAND storage density. Fink claimed at an HP Discover event
in Las Vegas that Memristor devices will be ready by the time flash NAND hits its limit in five years. He
also showed off a Memristor wafer, adding that it could have a 1.5PB capacity by the end of the decade.
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Comparison of emerging memory technologies

Data Retention

Cell Size (F?)

Minimum F demonstrated (nm)

Read Time (ns)

Write Time (ns)

Number of Rewrites 1016 1016 1016
Read Power Low Low Low
Write Power Low Low Low

Power (other than R/W)

Maturity

2D NAND 3D NAND PCRAM STTRAM 2D ReRAM 3D ReRAM
Flash Flash
Y Y Y Y Y Y
2-5 4-10 8-40 4 _
20 28 27 24
10-50 3-10 10-50 10-50
100-300 3-10 10-50 10-50
108-101° 1015 108-10%? 108-10%2
Low Medium Medium Medium
Medium Medium Medium
None Sneak Sneak
]
OAK RIDGE
National Laboratory
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Thinking back to 2009 projections, where is DOE in
2015?

Name TITAN MIRA Summit Aurora
System peak (PF) 27 10 150 180
Peak Power (MW) 9 48 10 13
=7 PB High Bandwidth
Total system 710TB 768TB EEP? IES R;;;;T * On-Package Memory,
memory ’ me?‘nc- local Memaory and
Y Persistent Memory
{'i‘r"Fd}e performance 1.452 0.204 > 40 > 17 times Mira
Multiple IBM Power9 Intel Xeon Phi
Node processors AMD Opteron 64-bit CPUs & processors
P MNvidia Kepler PowerPC A2 | multiple Nvidia Voltas (codenamed Knights
GPUS Hill)
System size (nodes) 18,688 nodes 49 152 =>3.400 nodes =50,000 nodes
2nd generation Intel
System Interconnect Gemini 5D Torus Dual Rail EDR-1B Omni-Path
Architecture
32 PB 26 PB 120 PB 150 PB
File System 1 TB/s. Lustre® 300 GB/s 1TB/s >1TB/s
‘ GPFS™ GPFS™ Lustre® OAK RIDGE

National Laboratory



Some ratios will be challenging to mitigate

System attributes 2001 2010 2014 “2015” est 2018 Ratio of Summit to Titan “2018”
Name Seaborg3 Jaguar Titan SUMMIT
System peak 10 Tera 2 Peta 27 200 136 5.04 1 Exaflop/sec
Power (MW) 0.8 6 9 15 10 ( 1.11 ] 20
Node main memory (GB) 38 512 13.47
System memory (PB) 0.006 0.3 0.7106 5 1.7408 [ 2.45 J 32-64
Node Persistent Memory (GB) 800
System Persistent Memory (PB) 2.72 ( o0 )
Node performance (TF) 0.024 0.125 1.4 0.5 7 40 28.57 1 10
Node memory BW 25 GB/s 0.1TB/sec |1TB/sec 0.4TB/sec | 4TB/sec
Node concurrency 16 12 0O(100) O(1,000) [ *POWERSs + *VOLTAs 0O(1,000) |0O(10,000)
System size (nodes) 416 18700 18700 50000 5000 3400 0.18 1000000 100000
Total Node Interconnect BW 1.5GB/s 150 GB/sec [1TB/sec 250 GB/sec | 2TB/sec
injection bandwidth per node (GB/s) 6.4 23 3.59
File system capacity (PB) 32 120 3.75
File system bandwidth (TB/s) 1 1 [ 1.00 ]
MTTI day O(1day) O(1day)

OAK RIDGE
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Observations about these trends

 Aside from all the interesting technical questions for computer
scientists...

OAK RIDGE

National Laboratory
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Observations about these trends (2)

1. For the success of HPC, we need to be very careful at this point
2. Complexity is everyone’'s enemy!

3. Performance portable programming models should be mandatory
on all current and future architectures

1. Increasingly, apps teams are spending time porting to new architectures
rather than doing science
4. Performance prediction techniques and tools are critical
1. Previously, a poor (procurement, optimization, facility) decision could cost
30%; now it could be 10x!

5. And then there is power consumption, reliability, etc

OAK RIDGE
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Holistic Performance Modeling for
Extreme-Scale HPC
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Prediction Techniques Ranked

2 5 2

3 2 % 3 2

Q. s 2 > O

N SaNNED < w0

Ad-hoc Analytical Models 3 2 4 1
Structured Analytical Models 2 1 4 1
Simulation — Functional 3 2 2 3 3
Simulation — Cycle Accurate 4 2 2 2 4
Hardware Emulation (FPGA) 3 3 3 2 3
Similar hardware measurement 2 1 4 2 2
Node Prototype 2 1 4 I 4

Prototype at Scale 2 1 4 I 2

Final System

OAK RIDGE
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Prediction Techniques Ranked

Speed

Scalability

Ad-hoc Analytical Models
Structured Analytical Models
Aspen

Simulation — Functional
Simulation — Cycle Accurate
Hardware Emulation (FPGA)
Similar hardware measurement
Node Prototype

Prototype at Scale

Final System

PO D o W B W= ==

—_—— = L= o W | Ease

P B s w oo — — o | Flexibility

— — WA A~ | Accuracy

O B 1O L B L) = —
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Aspen - Design Goals

» Abstract Scalable Performance Engineering Notation

— Create a deployable, extensible, and highly semantic representation for
analytical performance models

— Design and implement a new language for analytical performance modeling

— Use the language to create machine-independent models for important
applications and kernels

* Models are composable

Pencil-Comp —— 1
Pencil-Comm ]
Slab-Comp —¥— ]
Slab-Comm —H—

\:
[H-

e (s)

100 |-

| kernel localFFT

2 exposes parallelism [n"2]

3 requires flops [5 * n + logZ2(n)] as dp,
complex, simd 1 S ‘

- requires loads [a » n « max(l, log(n)/ 10000 100000 1e+06
log(Z)) = wordSize] from fftVolume g

Estimated Runtim

5}
K. Spafford and J.S. Vetter, “Aspen: A Domain Specific Language for Performance
Modeling,” in SC12: ACM/IEEE International Conference for High Performance

Computing, Networking, Storage, and Analysis, 2012

Listing 2. Aspen statements for the local 1D FFTs



Aspen Design Flow

Source code

2324 static inline

2325 void CalcMonotonicQGradientsForElems(Index t p nodelist[T_NUMELEMZ],

2326 Real t p_x[T_NUMNODE], Real t p_y[T_NUMNODE], Real t p_z [T_NUMNODE],

2327 Real t p_xd[T_NUMNODE], Real t p_vd[T_NUMNODE] ,Real_t p_zd[T_NUMNODE],

2328 Real t p_volo[T_NUMELEM], Real t p vnew[T_NUMELEM],

2328 Real_t p_delx zeta[T_NUMELEM], Real_t p_delv_zeta[T_NUMELEM],

2330 Real t p_delx xi[T_NUMELEM], Real_t p delv_xi[T_NUMELEM],

2331 Real_t p_delx eta[T_NUMELEM], Real t p_delv_eta[T_NUMELEM])

2332 B

2333 Index t© i/

2334 Index t numElem = m numElem;

2335 #pragma acc parallel loop independent present (p_vnew, p_nodelist, p_X, p_¥, b_zZ, p_xd, A\

2336 p vd, p_zd, p_volo, p delx xi, p delx eta, p_delx zeta, p delv xi, p_delv eta,\
p_delv_zeta)

2338 [ for (i = 0 :; i < numElem ; ++i } {

2338 const Real_t ptiny = 1.=-36 ;

2340 Real t ax,ay,az ;

2341 Real_t dxv,dyv,dzv ;

2342

2343 const Index t *elemToNode = &p_nodelist[o#%i];

2344 Index Tt n0 = elemToNode[O]

2345 Index_t nl = elemToNode[1]

2346 Index Tt n2 = elemToNode[2]

2347 Index_t n3 = elemToNode[3]

2348 Index Tt n4 = elemToNode[4]

2349 Index_t nS = elemToNode[S]

2350 Index Tt né = elemToNode[&]

2351 Index t n7 = elemToNode[7] :

2352

2353 Real t x0 = p_x[n0] ;

Creation

Historical

Empirical

Manual for future applications

Static analysis via compilers

Aspen code

kernel CalcMonotonicQGradients {

execute [numElems]

{
loads [8 * indexkordSize] from modelist
// Load and cache position and velocity.
loads/caching [8 * wordSize] from x
loads/caching [B * wordSize] from y
loads/caching [8 * wordSize] from z

loads/caching [B *+ wordSize] from xvel
loads/caching [8 * wordSize] from yvel
loads/caching [8 * wordsize] from zvel

loads [wordSize] from vole

loads [wordSize] from vnew

7/ dx, dy, etc.

flops [98] as dp, simd

£/ delvk delxk

Flops [9 + 8 + 3 + 3@ + 5] as dp, simd
stores [wordsize] to delv_xeta

£/ delxi delvi

Flops [9 + 8 + 3 + 36 + 5] as dp, simd
stores [wordSize] to delx_xi

£/ delxj and delvi

Flops [9 + 8 + 3 + 3@ + 5] as dp, simd
stores [wordSize] to delv_eta

Representation in Aspen

* Modular

* Sharable

« Composable

* Reflects prog structure

Existing models for MD, UHPC CP 1, Lulesh,
3D FFT, CoMD, VPFFT, ...

Memory

Messages

GPU Memory Usage (GB)

O B N W A U O N ©

edgeElems 90

Lomds 1E+02

1E+01

(sec)

1E+00

Runtime

Stores

1E-01

190 170  ====150  ====130
—70 —50 — 30

- Measured CPU
——Measured GPU
Aspen CPU
= “Aspen GPU
10 20 30 40 50
edgeElems

— 110
— 10

E‘—l U‘ >hm‘5“"‘lh"u‘ o m‘m‘x‘ O :m" 2T
S R R e R e
§550%82% aﬁggggsﬁsﬁs 80

Drive simulators

CalcForceN |
CalcVolE

CalcHour
CalcFBH £
CollectD _ E
IntegStr i

SumElemS |
InitStress

Interactive tools for graphs, queries

Design space optimization

Feedback to runtime systems

K. Spafford and J.S. Vetter, “Aspen: A Domain Specific Language for Performance Modeling,” in SC12: ACM/IEEE International Conference for High Performance

Computing, Networking, Storage, and Analysis, 2012
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Creating Aspen Models

Optional feedback for advanced users

I Input Program OpenARC IR Aspen IR

Analyzer

with Aspen
annotations

source code
Generator

Program

characteristics Aspen ASPEN IR
(flops, loads,

application
stores, etc.)

Aspen
Performance mode Aspen IR

Runtime Prediction Postprocessor
prediction Tools _ Aspen
machine

Other program model

analysis

%UAK RIDGE

National Laboratory

S.4Lee, J.S. Meredith, and J.S. Vetter, “COMPASS: A Framework for Automated Performance Modeling and Prediction,” in ACM
International Conference on Supercomputing (ICS). Newport Beach, California: ACM, 2015, 10.1145/2751205.2751220.
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Simple MM example generated from COMPASS

int N = 1024;
void matmul(float *a, float *b, float xc){ int i, j, k ;
#pragma acc kernels loop gang copyout(a[0:(N*N)]) \
copyin(b[0:(N*N)],c[0:(N=%N)])

for (i=0; i<N; i++){
#pragma acc loop worker

for (j=0; j<N; j++) { float sum = 0.0 ;
for (k=0; k<N; k++) {sum+4=b[ixN+k]xc[kxN-+j];}
a[i*N+j] = sum; }

} //end of i loop
} //end of matmul()
int main() {

int i; float *A = (floatx) malloc(N*Nx*sizeof(float));

float *B = (float*) malloc(N+Nx*sizeof(float));

float *C = (float*) malloc(N*Nx*sizeof(float));

for (i =0;1i < N=xN;i4++)

{ AJ[i] = 0.0F; BJ[i] = (float) i; C[i] = 1.0F; }
#pragma aspen modelregion label(MM)

matmul (A ,B,C);

free(A); free(B); free(C); return 0;
} //end of main()

D00 =1 O O = Wb

model MM {
param floatS = 4; param N = 1024
data A as Array((N=N), floatS)
data B as Array((N=N), floatS)
data C as Array((N+N), floatS)
kernel matmul {
execute matmul2_intracommIN
{ intracomm [floatS*(N*N)] to C as copyin
intracomm [floatSx(N*N)] to B as copyin }
map matmul2 [N] {
map matmul3 [N] {
iterate [N] {
execute matmul5
{ loads [floatS] from B as stride(1)
loads [floatS] from C; flops [2] as sp, simd }
} //end of iterate
execute matmul6 { stores [floatS] to A as stride(1) }
} // end of map matmul3
} //end of map matmul2
execute matmul2_intracommOUT
{ intracomm [floatS*(N=xN)] to A as copyout }
} //end of kernel matmul
kernel main { matmul() }

} //end of model MM

OAK RIDGE
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LULESH in Aspen

i branch: master~  aspen / models / lulesh / lulesh.aspen = B
[E8 jsmeredith on Sep 20, 2013 adding models

1 contributor

336 lines (288 sloc) 9.213 kb Raw Blame History [# 4 T[T

i

{/ lulesh.aspen

i

4/ An ASPEN application model for the LULESH 1.81 challenge problem. Based
5 // on the CUDA version of the source code found at:

5 ff https://computation.llnl.gov/casc/ShockHydro/

T

5 param nTimeSteps = 1495

i ka

o ff Information about domain
11 param edgetlems = 45
12 param edgeNodes = edgeElems + 1

14 param numtlems = edgeElems”3
15 param numhlodes = edgeNodes®3

17 /f Double precision
142 param wordSize = 8

e/ Element data

21 data mNodeList as Array(numElems, wordSize)

22 data mMatElemlList as Array(numElems, wordSize)

23 data mModelist as Array(8 * numElems, wordSize) // 8 nodes per element
24 data mlxim as Array(numElems, wordSize)

data mlxip as Array(numElems, wordSize)
data mletam as Array(numElems, wordSize)

data mletap as Array(numElems, wordSize)

data mzetam as Array(numElems, wordSize)
data mzetap as Array(numElems, wordSize)
data melemBC as Array(numElems, wordSize)
data mE as Array(numElems, wordSize)

data

W\

&

£
s
£

mP as Array(numElems, wordSize)

k=

26

Y]

-
L

kernel CalcMonotonicQGradients {

execute [numElems]

{

loads [8 * indexWordSize] from nodelist
ff Load and cache position and velocity.
loads/caching [8 * wordSize] from ®
loads/caching [8 * wordSize] from vy
loads/caching [8 * wordSize] from z

loads/caching [8 * wordSize] from wvel
loads/caching [8 * wordSize] from yvel
loads/caching [8 * wordSize] from zvel

loads [wordSize] from volo

loads [wordSize] from vnew

S/ odx, dy, etc.

flops [9@] as dp, simd

/S delvk delxk

Fflops [ + 8 + 3 + 3@ + 5] as dp, simd
stores [wordsize] to delv_xeta
J/odelxi delwi

flops [9 + 8 + 3 + 3@ + 5] as dp, simd
stores [wordSize] to delw_xdi

Ff delxj and delvj

flops [9 + 8 + 3 + 3@ + 5] as dp, simd
stores [wordSize] to delv_esta

%
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LULESH - runtime optimizations

edgeElems 120 170  ==—=150  ====130  ==—110
E O} ) 70 50 20 10
1E+02 8 =
s Measured CPU .
@™
8 6
= Measured GPU -
1E+01 - ?g’ . h ]
>
] == =Aspen CPU > a
E [=]
@ £
£ Aspen GPU 27 . —~—
£ 1E+00 - «fAspen A
= :,
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= ¢ Runtime Using 1
Aspen Prediction o - —
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Fig. 7. Measured and predicted runtime of the entire LULESH | o
program on CPU and GPU. including measured runtimes using | Fig. 80 GPU Memory Usage of each Function in LULESH,

the automatically predicted optimal target device at each size. where the memory usage of a function is inclusive; value for
a parent function includes data accessed by its child functions

in the call eraph.
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3DFFT // Dimension of cubic 3D Volume

param n = 8192

param a = 6.3

param wordSize = 16 // Double Complex Words
param dataPerProc = (n°3 = wordSize) / P

daha ffcvolume [N~ 3 = wordSize]

control pencil {

localFFT —> transpose // in X | econtrol slab {
localFFT —> transpcocse // in X

exchange

localFFT —> transpose // in Y localFFT —> transpose // in Y
exchange exchange

localFFT —> transpose // 1in Z localFFT —» transpose // in Z

kernel localFFT {
exposes parallelism [n™ 2]
requires flops [5 » n = log2(n)] as dp, simd
requires locads [a * (nx*xwordSize) = max(l, log(n*=wordSize)/log(Z)) ]
from fftVvVolume

kernel exchange {
exposes parallelism [P]
requires messages [(nT2 = wordSize) / P] as

allToAll %OAK RIDGE

National Laboratory




3DFFT: Slab vs. Pencil Tradeoff
ideal Parallelism

* Insights become obvious with Aspen

Estimated Runtime for 3DFFT

Estimated Runtime (s)

1000

100 |

—
o
III|

><||

Pencil-Comp —+— 1
Pencil-Comm —<—
Slab-Comp —k— ]
Slab-Comm —H— ]

10000

100000
P

1e+06
JAK RIDGE
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Design Space Exploration

Size of Data Obect: fftVolume Estimated Runtime by Kernel for 3DFFT
l1.6e+13 I T 80 T T \ \ T T T \
fftvVolume —_— localFFT _—
1.4e+13 ~GPU Memory Capacity n = 70 [“shuffle .
= 60 | exchange _—
*a,,"; 1.2e+13 |- - g Total (w/CF) —_—
E\ le+13 - | g 50 Time Budget _—
@ @ n
o 8e+12 | = E 40
E 6e+12 s *g 30 1
8 de+12 | . 7 200 .
; ime Budget
Set12 &= Keeneland Capacity _ 10 /
0 | 41_’/ | | | I 0 ] ] | | | )
1000 2000 3000 4000 5000 6000 7000 8000 900010000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n
Estimated Energy by Kernel for 3DFFT
1.2e+07 | I \ 1 | \
localFFT Static Energy (w/CF)
1e407 - shuffle Total Energy (w/CF) d ° I OOO
= exchange Energy Budget n IS apprOX” I late y 5
>
o 8e+06 - -
]
0
- 6e+06 —
2 Energy Budget
£ 4e+06 - .
&
2e+06
0 | | | 4 T | ]
1000 2000 3000 4000 5000 6000 7000 8000 900010000 OAK RIDGE

n National Laboratory



PANORAMA Overview

—>.(Simulation)<

A

E.Deelman, C. Carothers et al., “PANORAMA: An Approach to Performance Modeling and Diagnosis of Extreme Scale Workflows,” International Journal of

High Performance Computing Applications, (to appear), 2015,

;

v

Workflow Execution

%
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Spallation Neutron Source Workflow

Input

e

ScaIaL e-Molecular Dynamics

Equilibrate Stage

Production Stage

NAMD
Scalable.Molecular Dynamics

AN

)

aseqeieq
yoedun

L

Amberl4

Filtering

J

v

v

-
9assena

Coherent Analysis

N
9a ssena

Incoherent Analysis )

Post-

kernel main

{
par {
seq {
call namd_eq_200Q)
call namd_prod_200(0)
}
seq {
call namd_eq_290Q)
call amd_prod_290(Q)
}
call unpack_database()
}
par {
call amber_ptraj_200Q)
call amber_ptraj_290(Q)
}
par {
call sassena_coh_2000)
call sassena_coh_2900)
call sassena_inc_2000)
call sassena_inc_2900)
} OAK RIDGE
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Summary

« Our community has major challenges in HPC as we move to extreme
scale

— Power, Performance, Resilience, Productivity
— Major shifts in architectures, software, applications

* Not just HPC: Most uncertainty in two decades
* New technologies emerging to address some of these challenges

— Heterogeneous computing
— Nonvolatile memory

« Consequently, we now have critical situations in
— Portable programming models
— Performance prediction for procurement, optimization, etc

* Aspen is a tool we have developed for performance prediction;,,(mKRIDGE

National Laboratory
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